Properties

Label 12.0.1452563570950144.4
Degree $12$
Signature $[0, 6]$
Discriminant $2^{16}\cdot 53^{6}$
Root discriminant $18.34$
Ramified primes $2, 53$
Class number $4$
Class group $[4]$
Galois group $C_2 \times S_4$ (as 12T24)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![25, 30, 18, 34, -69, -4, 68, -68, 51, -34, 18, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 6*x^11 + 18*x^10 - 34*x^9 + 51*x^8 - 68*x^7 + 68*x^6 - 4*x^5 - 69*x^4 + 34*x^3 + 18*x^2 + 30*x + 25)
 
gp: K = bnfinit(x^12 - 6*x^11 + 18*x^10 - 34*x^9 + 51*x^8 - 68*x^7 + 68*x^6 - 4*x^5 - 69*x^4 + 34*x^3 + 18*x^2 + 30*x + 25, 1)
 

Normalized defining polynomial

\( x^{12} - 6 x^{11} + 18 x^{10} - 34 x^{9} + 51 x^{8} - 68 x^{7} + 68 x^{6} - 4 x^{5} - 69 x^{4} + 34 x^{3} + 18 x^{2} + 30 x + 25 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1452563570950144=2^{16}\cdot 53^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $18.34$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{3} - \frac{1}{8} a^{2} - \frac{1}{8} a - \frac{3}{8}$, $\frac{1}{8} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{8}$, $\frac{1}{8} a^{9} - \frac{1}{2} a^{2} - \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{8} a^{10} - \frac{1}{2} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{27760} a^{11} - \frac{1091}{27760} a^{10} + \frac{483}{27760} a^{9} - \frac{119}{27760} a^{8} + \frac{97}{3470} a^{7} - \frac{143}{1735} a^{6} - \frac{493}{6940} a^{5} - \frac{1211}{6940} a^{4} + \frac{9031}{27760} a^{3} + \frac{7619}{27760} a^{2} - \frac{4527}{27760} a - \frac{1033}{5552}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{1059}{27760} a^{11} - \frac{6799}{27760} a^{10} + \frac{22227}{27760} a^{9} - \frac{46211}{27760} a^{8} + \frac{37867}{13880} a^{7} - \frac{54251}{13880} a^{6} + \frac{64491}{13880} a^{5} - \frac{37003}{13880} a^{4} - \frac{23781}{27760} a^{3} + \frac{32001}{27760} a^{2} + \frac{22267}{27760} a + \frac{6737}{5552} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1223.19274332 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times S_4$ (as 12T24):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 48
The 10 conjugacy class representatives for $C_2 \times S_4$
Character table for $C_2 \times S_4$

Intermediate fields

\(\Q(\sqrt{-1}) \), 3.1.212.1, 6.2.9528128.2, 6.0.179776.1, 6.0.38112512.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 6 siblings: data not computed
Degree 8 siblings: data not computed
Degree 12 siblings: data not computed
Degree 16 sibling: data not computed
Degree 24 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ R ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.8.12.14$x^{8} + 12 x^{4} + 144$$4$$2$$12$$D_4$$[2, 2]^{2}$
53Data not computed