Properties

Label 12.0.14455390465...968.48
Degree $12$
Signature $[0, 6]$
Discriminant $2^{35}\cdot 29^{10}$
Root discriminant $124.93$
Ramified primes $2, 29$
Class number $16$ (GRH)
Class group $[2, 2, 4]$ (GRH)
Galois group $A_4:C_4$ (as 12T27)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5328774, 1524488, 2102474, 190308, 240035, 5384, 24180, 224, 688, -264, -10, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 - 10*x^10 - 264*x^9 + 688*x^8 + 224*x^7 + 24180*x^6 + 5384*x^5 + 240035*x^4 + 190308*x^3 + 2102474*x^2 + 1524488*x + 5328774)
 
gp: K = bnfinit(x^12 - 4*x^11 - 10*x^10 - 264*x^9 + 688*x^8 + 224*x^7 + 24180*x^6 + 5384*x^5 + 240035*x^4 + 190308*x^3 + 2102474*x^2 + 1524488*x + 5328774, 1)
 

Normalized defining polynomial

\( x^{12} - 4 x^{11} - 10 x^{10} - 264 x^{9} + 688 x^{8} + 224 x^{7} + 24180 x^{6} + 5384 x^{5} + 240035 x^{4} + 190308 x^{3} + 2102474 x^{2} + 1524488 x + 5328774 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(14455390465720043561811968=2^{35}\cdot 29^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $124.93$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5208625275491137329104186857427} a^{11} + \frac{15843231845862507760017928780}{127039640865637495831809435547} a^{10} + \frac{679089469744434110253421241889}{5208625275491137329104186857427} a^{9} + \frac{1983311602947428604151335464791}{5208625275491137329104186857427} a^{8} + \frac{548756949016829987726510416334}{5208625275491137329104186857427} a^{7} - \frac{1665407802861701637396698389287}{5208625275491137329104186857427} a^{6} - \frac{470930845403811936860489499396}{5208625275491137329104186857427} a^{5} + \frac{252810175474233771511098310414}{5208625275491137329104186857427} a^{4} + \frac{854599698406899997930933688149}{5208625275491137329104186857427} a^{3} - \frac{46744027695830040517690373233}{5208625275491137329104186857427} a^{2} - \frac{87670630632744421143355402689}{5208625275491137329104186857427} a - \frac{2062306879899310146029522138139}{5208625275491137329104186857427}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 14061161.6139 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$A_4:C_4$ (as 12T27):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 48
The 10 conjugacy class representatives for $A_4:C_4$
Character table for $A_4:C_4$

Intermediate fields

3.3.6728.1, 6.2.5794045952.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 sibling: data not computed
Degree 16 sibling: data not computed
Degree 24 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.9.2$x^{4} - 2 x^{2} + 2$$4$$1$$9$$D_{4}$$[2, 3, 7/2]$
2.8.26.2$x^{8} + 8 x^{7} + 12 x^{6} + 12 x^{4} + 8 x^{3} + 30$$8$$1$$26$$C_2^2:C_4$$[2, 3, 7/2, 4]$
$29$29.12.10.3$x^{12} + 232 x^{6} + 22707$$6$$2$$10$$C_3 : C_4$$[\ ]_{6}^{2}$