Normalized defining polynomial
\( x^{12} - 2 x^{11} + 151 x^{10} - 214 x^{9} + 11149 x^{8} - 15346 x^{7} + 515448 x^{6} - 732598 x^{5} + 15029687 x^{4} - 18766796 x^{3} + 248996314 x^{2} - 193232084 x + 1771822921 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14358355998689738428416000000=2^{18}\cdot 3^{6}\cdot 5^{6}\cdot 37^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $222.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4440=2^{3}\cdot 3\cdot 5\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4440}(1,·)$, $\chi_{4440}(4229,·)$, $\chi_{4440}(961,·)$, $\chi_{4440}(841,·)$, $\chi_{4440}(269,·)$, $\chi_{4440}(989,·)$, $\chi_{4440}(4081,·)$, $\chi_{4440}(149,·)$, $\chi_{4440}(1321,·)$, $\chi_{4440}(121,·)$, $\chi_{4440}(1469,·)$, $\chi_{4440}(1109,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{11} a^{9} - \frac{2}{11} a^{7} + \frac{4}{11} a^{5} + \frac{3}{11} a^{3} + \frac{5}{11} a$, $\frac{1}{11} a^{10} - \frac{2}{11} a^{8} + \frac{4}{11} a^{6} + \frac{3}{11} a^{4} + \frac{5}{11} a^{2}$, $\frac{1}{62068174914784843796028280113277} a^{11} - \frac{248975698883145803844173137565}{62068174914784843796028280113277} a^{10} + \frac{857934726136571549646863356765}{62068174914784843796028280113277} a^{9} + \frac{2069437309450450318758820418387}{62068174914784843796028280113277} a^{8} + \frac{1402942952232722969116701370382}{62068174914784843796028280113277} a^{7} + \frac{27879963152380845187663967093938}{62068174914784843796028280113277} a^{6} - \frac{8886557157972860789911908274304}{62068174914784843796028280113277} a^{5} + \frac{14471838359585735048105175201762}{62068174914784843796028280113277} a^{4} - \frac{4378218048069219446754978907769}{62068174914784843796028280113277} a^{3} - \frac{3092305388830379483483599657056}{62068174914784843796028280113277} a^{2} + \frac{12861974876716566706873715921328}{62068174914784843796028280113277} a - \frac{4709301819632900622006491076}{37869539301272021840163685243}$
Class group and class number
$C_{2}\times C_{2}\times C_{262104}$, which has order $1048416$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2518.2332404942745 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1110}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{37}) \), 3.3.1369.1, \(\Q(\sqrt{-30}, \sqrt{37})\), 6.0.119826357696000.1, 6.0.3238550208000.4, 6.6.69343957.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.23 | $x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $37$ | 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |