Normalized defining polynomial
\( x^{12} - 4 x^{11} + 66 x^{10} - 308 x^{9} + 1331 x^{8} - 2904 x^{7} + 6248 x^{6} + 37840 x^{5} + \cdots + 259089 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(140498081973195423325618176\)
\(\medspace = 2^{22}\cdot 3^{6}\cdot 11^{16}\)
|
| |
| Root discriminant: | \(151.00\) |
| |
| Galois root discriminant: | $2^{11/6}3^{1/2}11^{84/55}\approx 240.40284291526194$ | ||
| Ramified primes: |
\(2\), \(3\), \(11\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{24}a^{6}+\frac{1}{4}a^{5}+\frac{7}{24}a^{4}-\frac{11}{24}a^{2}-\frac{1}{4}a+\frac{3}{8}$, $\frac{1}{24}a^{7}-\frac{5}{24}a^{5}+\frac{1}{4}a^{4}-\frac{11}{24}a^{3}-\frac{1}{2}a^{2}-\frac{1}{8}a-\frac{1}{4}$, $\frac{1}{72}a^{8}-\frac{1}{6}a^{5}+\frac{1}{3}a^{4}-\frac{1}{6}a^{3}-\frac{5}{36}a^{2}-\frac{1}{6}a+\frac{7}{24}$, $\frac{1}{72}a^{9}+\frac{1}{3}a^{5}-\frac{5}{36}a^{3}+\frac{7}{24}a-\frac{1}{2}$, $\frac{1}{216}a^{10}-\frac{1}{216}a^{8}-\frac{1}{72}a^{7}+\frac{1}{72}a^{6}-\frac{11}{24}a^{5}+\frac{17}{216}a^{4}-\frac{1}{8}a^{3}+\frac{41}{108}a^{2}-\frac{11}{72}a+\frac{4}{9}$, $\frac{1}{69\cdots 68}a^{11}-\frac{12\cdots 09}{23\cdots 56}a^{10}+\frac{24\cdots 63}{69\cdots 68}a^{9}-\frac{75\cdots 63}{23\cdots 56}a^{8}-\frac{13\cdots 43}{11\cdots 28}a^{7}+\frac{33\cdots 63}{19\cdots 88}a^{6}+\frac{69\cdots 85}{17\cdots 92}a^{5}+\frac{18\cdots 29}{11\cdots 28}a^{4}+\frac{76\cdots 85}{69\cdots 68}a^{3}-\frac{92\cdots 59}{23\cdots 56}a^{2}+\frac{14\cdots 75}{23\cdots 56}a-\frac{80\cdots 99}{25\cdots 84}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{2}$, which has order $4$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{34\cdots 02}{14\cdots 41}a^{11}-\frac{12\cdots 11}{11\cdots 28}a^{10}+\frac{87\cdots 27}{58\cdots 64}a^{9}-\frac{83\cdots 67}{11\cdots 28}a^{8}+\frac{16\cdots 79}{64\cdots 96}a^{7}-\frac{46\cdots 93}{19\cdots 88}a^{6}-\frac{71\cdots 15}{58\cdots 64}a^{5}+\frac{28\cdots 71}{14\cdots 41}a^{4}-\frac{19\cdots 25}{58\cdots 64}a^{3}+\frac{77\cdots 85}{11\cdots 28}a^{2}+\frac{56\cdots 65}{16\cdots 49}a+\frac{15\cdots 57}{38\cdots 76}$, $\frac{22\cdots 39}{69\cdots 68}a^{11}+\frac{38\cdots 61}{23\cdots 56}a^{10}+\frac{49\cdots 75}{69\cdots 68}a^{9}+\frac{24\cdots 57}{23\cdots 56}a^{8}-\frac{36\cdots 81}{58\cdots 64}a^{7}+\frac{47\cdots 69}{12\cdots 92}a^{6}-\frac{32\cdots 57}{34\cdots 84}a^{5}+\frac{20\cdots 99}{58\cdots 64}a^{4}+\frac{10\cdots 57}{69\cdots 68}a^{3}+\frac{87\cdots 97}{23\cdots 56}a^{2}+\frac{85\cdots 17}{23\cdots 56}a+\frac{10\cdots 69}{77\cdots 52}$, $\frac{32\cdots 49}{34\cdots 84}a^{11}-\frac{20\cdots 15}{34\cdots 84}a^{10}+\frac{19\cdots 72}{43\cdots 23}a^{9}-\frac{11\cdots 47}{34\cdots 84}a^{8}+\frac{96\cdots 89}{11\cdots 28}a^{7}+\frac{60\cdots 53}{58\cdots 64}a^{6}-\frac{32\cdots 93}{34\cdots 84}a^{5}-\frac{23\cdots 99}{17\cdots 92}a^{4}-\frac{84\cdots 49}{87\cdots 46}a^{3}-\frac{26\cdots 35}{34\cdots 84}a^{2}-\frac{54\cdots 63}{11\cdots 28}a-\frac{48\cdots 85}{11\cdots 28}$, $\frac{16\cdots 53}{34\cdots 84}a^{11}-\frac{86\cdots 43}{34\cdots 84}a^{10}+\frac{11\cdots 97}{34\cdots 84}a^{9}-\frac{32\cdots 35}{17\cdots 92}a^{8}+\frac{95\cdots 11}{11\cdots 28}a^{7}-\frac{24\cdots 79}{11\cdots 28}a^{6}+\frac{16\cdots 35}{34\cdots 84}a^{5}+\frac{52\cdots 05}{34\cdots 84}a^{4}+\frac{20\cdots 12}{43\cdots 23}a^{3}+\frac{10\cdots 89}{87\cdots 46}a^{2}+\frac{26\cdots 06}{14\cdots 41}a-\frac{10\cdots 43}{11\cdots 28}$, $\frac{82\cdots 73}{23\cdots 56}a^{11}+\frac{93\cdots 95}{69\cdots 68}a^{10}+\frac{82\cdots 15}{23\cdots 56}a^{9}+\frac{10\cdots 75}{69\cdots 68}a^{8}-\frac{15\cdots 05}{11\cdots 28}a^{7}+\frac{10\cdots 19}{11\cdots 28}a^{6}-\frac{50\cdots 61}{14\cdots 41}a^{5}+\frac{21\cdots 43}{17\cdots 92}a^{4}-\frac{19\cdots 19}{23\cdots 56}a^{3}+\frac{22\cdots 19}{69\cdots 68}a^{2}+\frac{31\cdots 61}{23\cdots 56}a+\frac{48\cdots 95}{23\cdots 56}$
|
| |
| Regulator: | \( 665279714.869 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 665279714.869 \cdot 4}{2\cdot\sqrt{140498081973195423325618176}}\cr\approx \mathstrut & 6.90682241229 \end{aligned}\] (assuming GRH)
Galois group
$\PSL(2,11)$ (as 12T179):
| A non-solvable group of order 660 |
| The 8 conjugacy class representatives for $\PSL(2,11)$ |
| Character table for $\PSL(2,11)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 11 siblings: | 11.3.243920281203464276606976.1, 11.3.243920281203464276606976.6 |
| Minimal sibling: | 11.3.243920281203464276606976.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }^{2}$ | ${\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/13.5.0.1}{5} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.5.0.1}{5} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.5.0.1}{5} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.5.0.1}{5} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.5.0.1}{5} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{4}$ | ${\href{/padicField/41.5.0.1}{5} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.5.0.1}{5} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.5.0.1}{5} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.5.0.1}{5} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.6.22a1.1 | $x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 141 x^{6} + 126 x^{5} + 90 x^{4} + 50 x^{3} + 21 x^{2} + 6 x + 3$ | $6$ | $2$ | $22$ | $D_6$ | $$[3]_{3}^{2}$$ |
|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(11\)
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 11.1.11.16a2.1 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $$[\frac{8}{5}]_{5}$$ |