Properties

Label 12.0.13494136204...0000.1
Degree $12$
Signature $[0, 6]$
Discriminant $2^{12}\cdot 5^{6}\cdot 7^{6}\cdot 13^{11}$
Root discriminant $124.22$
Ramified primes $2, 5, 7, 13$
Class number $180640$ (GRH)
Class group $[2, 2, 2, 2, 11290]$ (GRH)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![23897453125, 0, 4779490625, 0, 273113750, 0, 6688500, 0, 79625, 0, 455, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 455*x^10 + 79625*x^8 + 6688500*x^6 + 273113750*x^4 + 4779490625*x^2 + 23897453125)
 
gp: K = bnfinit(x^12 + 455*x^10 + 79625*x^8 + 6688500*x^6 + 273113750*x^4 + 4779490625*x^2 + 23897453125, 1)
 

Normalized defining polynomial

\( x^{12} + 455 x^{10} + 79625 x^{8} + 6688500 x^{6} + 273113750 x^{4} + 4779490625 x^{2} + 23897453125 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(13494136204675776832000000=2^{12}\cdot 5^{6}\cdot 7^{6}\cdot 13^{11}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $124.22$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 7, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1820=2^{2}\cdot 5\cdot 7\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{1820}(1,·)$, $\chi_{1820}(1539,·)$, $\chi_{1820}(1121,·)$, $\chi_{1820}(841,·)$, $\chi_{1820}(1259,·)$, $\chi_{1820}(1679,·)$, $\chi_{1820}(1681,·)$, $\chi_{1820}(839,·)$, $\chi_{1820}(1399,·)$, $\chi_{1820}(279,·)$, $\chi_{1820}(1401,·)$, $\chi_{1820}(701,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{35} a^{2}$, $\frac{1}{35} a^{3}$, $\frac{1}{1225} a^{4}$, $\frac{1}{1225} a^{5}$, $\frac{1}{42875} a^{6}$, $\frac{1}{42875} a^{7}$, $\frac{1}{1500625} a^{8}$, $\frac{1}{1500625} a^{9}$, $\frac{1}{52521875} a^{10}$, $\frac{1}{52521875} a^{11}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{11290}$, which has order $180640$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{1}{1500625} a^{8} + \frac{8}{42875} a^{6} + \frac{4}{245} a^{4} + \frac{16}{35} a^{2} + 2 \),  \( \frac{1}{1225} a^{4} + \frac{4}{35} a^{2} + 2 \),  \( \frac{1}{42875} a^{6} + \frac{6}{1225} a^{4} + \frac{2}{7} a^{2} + 4 \),  \( \frac{1}{35} a^{2} + 3 \),  \( \frac{1}{1500625} a^{8} + \frac{9}{42875} a^{6} + \frac{27}{1225} a^{4} + \frac{29}{35} a^{2} + 6 \) (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 120.784031363 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{12}$ (as 12T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 12
The 12 conjugacy class representatives for $C_{12}$
Character table for $C_{12}$

Intermediate fields

\(\Q(\sqrt{13}) \), 3.3.169.1, 4.0.43061200.2, \(\Q(\zeta_{13})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ R R ${\href{/LocalNumberField/11.12.0.1}{12} }$ R ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.12.0.1}{12} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/37.12.0.1}{12} }$ ${\href{/LocalNumberField/41.12.0.1}{12} }$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.12.0.1}{12} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.12.25$x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$$2$$6$$12$$C_{12}$$[2]^{6}$
$5$5.4.2.2$x^{4} - 5 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
5.4.2.2$x^{4} - 5 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
5.4.2.2$x^{4} - 5 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
$7$7.12.6.2$x^{12} + 7203 x^{4} - 16807 x^{2} + 588245$$2$$6$$6$$C_{12}$$[\ ]_{2}^{6}$
$13$13.12.11.4$x^{12} - 832$$12$$1$$11$$C_{12}$$[\ ]_{12}$