Normalized defining polynomial
\( x^{12} - 6 x^{11} + 25 x^{10} - 70 x^{9} + 151 x^{8} - 250 x^{7} + 347 x^{6} - 394 x^{5} + 393 x^{4} + \cdots + 33 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(13387459495169140625\) \(\medspace = 5^{8}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(39.25\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{2/3}17^{11/12}\approx 39.254686577190164$ | ||
Ramified primes: | \(5\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}-\frac{1}{3}a^{7}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{7}-\frac{1}{3}a^{6}+\frac{1}{3}a^{5}+\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{3}a^{10}+\frac{1}{3}a^{7}+\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}+\frac{1}{3}a^{2}-\frac{1}{3}a$, $\frac{1}{183}a^{11}+\frac{25}{183}a^{10}+\frac{7}{183}a^{9}+\frac{25}{183}a^{8}-\frac{50}{183}a^{7}-\frac{31}{183}a^{6}-\frac{4}{183}a^{5}+\frac{31}{183}a^{4}+\frac{4}{61}a^{3}+\frac{58}{183}a^{2}+\frac{58}{183}a-\frac{22}{61}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{4}$, which has order $4$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{20}{61}a^{11}+\frac{208}{183}a^{10}-\frac{725}{183}a^{9}+\frac{415}{61}a^{8}-\frac{586}{61}a^{7}+\frac{376}{61}a^{6}-\frac{347}{61}a^{5}-\frac{1006}{183}a^{4}+\frac{683}{183}a^{3}-\frac{2809}{183}a^{2}+\frac{1156}{183}a-\frac{449}{61}$, $\frac{20}{61}a^{11}-\frac{452}{183}a^{10}+\frac{1945}{183}a^{9}-\frac{1940}{61}a^{8}+\frac{4246}{61}a^{7}-\frac{7086}{61}a^{6}+\frac{9375}{61}a^{5}-\frac{31141}{183}a^{4}+\frac{28841}{183}a^{3}-\frac{22384}{183}a^{2}+\frac{12325}{183}a-\frac{1442}{61}$, $\frac{182}{183}a^{11}+\frac{940}{183}a^{10}-\frac{3653}{183}a^{9}+\frac{9175}{183}a^{8}-\frac{17801}{183}a^{7}+\frac{25772}{183}a^{6}-\frac{32029}{183}a^{5}+\frac{30958}{183}a^{4}-\frac{9085}{61}a^{3}+\frac{17077}{183}a^{2}-\frac{8726}{183}a+\frac{832}{61}$, $\frac{20}{183}a^{11}-\frac{110}{183}a^{10}+\frac{445}{183}a^{9}-\frac{1208}{183}a^{8}+\frac{846}{61}a^{7}-\frac{4097}{183}a^{6}+\frac{5471}{183}a^{5}-\frac{5480}{183}a^{4}+\frac{1422}{61}a^{3}-\frac{2195}{183}a^{2}+\frac{794}{183}a-\frac{13}{61}$, $\frac{16}{61}a^{11}-\frac{88}{61}a^{10}+\frac{356}{61}a^{9}-\frac{2765}{183}a^{8}+\frac{5591}{183}a^{7}-\frac{2753}{61}a^{6}+\frac{10361}{183}a^{5}-\frac{10285}{183}a^{4}+\frac{9238}{183}a^{3}-\frac{6061}{183}a^{2}+\frac{3089}{183}a-\frac{141}{61}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 27801.4421457893 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 27801.4421457893 \cdot 4}{2\cdot\sqrt{13387459495169140625}}\cr\approx \mathstrut & 0.935034091417998 \end{aligned}\]
Galois group
A non-solvable group of order 240 |
The 14 conjugacy class representatives for $A_5:C_4$ |
Character table for $A_5:C_4$ |
Intermediate fields
6.2.887410625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 20 sibling: | data not computed |
Degree 24 siblings: | data not computed |
Degree 40 siblings: | data not computed |
Arithmetically equvalently siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.10.0.1}{10} }{,}\,{\href{/padicField/2.2.0.1}{2} }$ | ${\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.5.0.1}{5} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.10.0.1}{10} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.12.8.1 | $x^{12} + 12 x^{10} + 32 x^{9} + 54 x^{8} + 96 x^{7} - 50 x^{6} + 240 x^{5} - 360 x^{4} - 884 x^{3} + 4044 x^{2} - 3912 x + 4173$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |