Normalized defining polynomial
\( x^{12} - x^{11} + 23 x^{10} - 241 x^{9} + 963 x^{8} - 5332 x^{7} + 35774 x^{6} - 128756 x^{5} + \cdots + 7283051 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(1335225603550355658203125\) \(\medspace = 5^{9}\cdot 7^{8}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(102.44\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{3/4}7^{2/3}17^{3/4}\approx 102.4384238436466$ | ||
Ramified primes: | \(5\), \(7\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{85}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(595=5\cdot 7\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{595}(256,·)$, $\chi_{595}(1,·)$, $\chi_{595}(86,·)$, $\chi_{595}(582,·)$, $\chi_{595}(72,·)$, $\chi_{595}(169,·)$, $\chi_{595}(268,·)$, $\chi_{595}(424,·)$, $\chi_{595}(242,·)$, $\chi_{595}(438,·)$, $\chi_{595}(183,·)$, $\chi_{595}(254,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.614125.2$^{2}$, 12.0.1335225603550355658203125.2$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{57}a^{9}-\frac{2}{19}a^{8}+\frac{28}{57}a^{7}-\frac{4}{57}a^{6}+\frac{4}{57}a^{5}+\frac{7}{19}a^{4}+\frac{5}{57}a^{3}+\frac{23}{57}a^{2}-\frac{3}{19}a-\frac{10}{57}$, $\frac{1}{57}a^{10}-\frac{8}{57}a^{8}-\frac{7}{57}a^{7}-\frac{20}{57}a^{6}-\frac{4}{19}a^{5}+\frac{17}{57}a^{4}-\frac{4}{57}a^{3}+\frac{5}{19}a^{2}-\frac{7}{57}a-\frac{1}{19}$, $\frac{1}{12\!\cdots\!87}a^{11}-\frac{13\!\cdots\!84}{41\!\cdots\!29}a^{10}-\frac{28\!\cdots\!96}{64\!\cdots\!73}a^{9}-\frac{33\!\cdots\!29}{12\!\cdots\!87}a^{8}-\frac{69\!\cdots\!69}{12\!\cdots\!87}a^{7}+\frac{11\!\cdots\!76}{41\!\cdots\!29}a^{6}+\frac{62\!\cdots\!53}{12\!\cdots\!87}a^{5}-\frac{90\!\cdots\!96}{12\!\cdots\!87}a^{4}+\frac{18\!\cdots\!36}{41\!\cdots\!29}a^{3}+\frac{42\!\cdots\!77}{12\!\cdots\!87}a^{2}+\frac{12\!\cdots\!25}{41\!\cdots\!29}a-\frac{78\!\cdots\!19}{41\!\cdots\!29}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{1492}$, which has order $1492$ (assuming GRH)
Relative class number: $746$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{85\!\cdots\!15}{21\!\cdots\!91}a^{11}-\frac{69\!\cdots\!40}{21\!\cdots\!91}a^{10}+\frac{14\!\cdots\!70}{21\!\cdots\!91}a^{9}-\frac{21\!\cdots\!95}{21\!\cdots\!91}a^{8}+\frac{53\!\cdots\!80}{21\!\cdots\!91}a^{7}-\frac{41\!\cdots\!70}{21\!\cdots\!91}a^{6}+\frac{25\!\cdots\!39}{21\!\cdots\!91}a^{5}-\frac{71\!\cdots\!65}{21\!\cdots\!91}a^{4}+\frac{30\!\cdots\!15}{21\!\cdots\!91}a^{3}-\frac{11\!\cdots\!35}{21\!\cdots\!91}a^{2}+\frac{18\!\cdots\!30}{21\!\cdots\!91}a-\frac{34\!\cdots\!44}{21\!\cdots\!91}$, $\frac{85\!\cdots\!15}{21\!\cdots\!91}a^{11}-\frac{69\!\cdots\!40}{21\!\cdots\!91}a^{10}+\frac{14\!\cdots\!70}{21\!\cdots\!91}a^{9}-\frac{21\!\cdots\!95}{21\!\cdots\!91}a^{8}+\frac{53\!\cdots\!80}{21\!\cdots\!91}a^{7}-\frac{41\!\cdots\!70}{21\!\cdots\!91}a^{6}+\frac{25\!\cdots\!39}{21\!\cdots\!91}a^{5}-\frac{71\!\cdots\!65}{21\!\cdots\!91}a^{4}+\frac{30\!\cdots\!15}{21\!\cdots\!91}a^{3}-\frac{11\!\cdots\!35}{21\!\cdots\!91}a^{2}+\frac{18\!\cdots\!30}{21\!\cdots\!91}a-\frac{12\!\cdots\!53}{21\!\cdots\!91}$, $\frac{38182842187471}{26\!\cdots\!99}a^{11}+\frac{189947591477102}{26\!\cdots\!99}a^{10}-\frac{234558916958142}{26\!\cdots\!99}a^{9}-\frac{42\!\cdots\!09}{26\!\cdots\!99}a^{8}-\frac{29\!\cdots\!38}{26\!\cdots\!99}a^{7}+\frac{21\!\cdots\!72}{26\!\cdots\!99}a^{6}-\frac{16\!\cdots\!33}{14\!\cdots\!21}a^{5}+\frac{49\!\cdots\!82}{26\!\cdots\!99}a^{4}-\frac{34\!\cdots\!85}{26\!\cdots\!99}a^{3}+\frac{10\!\cdots\!75}{26\!\cdots\!99}a^{2}-\frac{16\!\cdots\!21}{26\!\cdots\!99}a+\frac{18\!\cdots\!39}{26\!\cdots\!99}$, $\frac{67\!\cdots\!44}{41\!\cdots\!29}a^{11}+\frac{16\!\cdots\!58}{41\!\cdots\!29}a^{10}+\frac{18\!\cdots\!02}{41\!\cdots\!29}a^{9}-\frac{13\!\cdots\!90}{41\!\cdots\!29}a^{8}+\frac{26\!\cdots\!23}{41\!\cdots\!29}a^{7}-\frac{24\!\cdots\!61}{41\!\cdots\!29}a^{6}+\frac{19\!\cdots\!08}{41\!\cdots\!29}a^{5}-\frac{42\!\cdots\!83}{41\!\cdots\!29}a^{4}+\frac{22\!\cdots\!77}{41\!\cdots\!29}a^{3}-\frac{93\!\cdots\!25}{41\!\cdots\!29}a^{2}+\frac{15\!\cdots\!69}{41\!\cdots\!29}a+\frac{80\!\cdots\!59}{41\!\cdots\!29}$, $\frac{25\!\cdots\!23}{41\!\cdots\!29}a^{11}+\frac{21\!\cdots\!43}{41\!\cdots\!29}a^{10}+\frac{53\!\cdots\!40}{41\!\cdots\!29}a^{9}-\frac{50\!\cdots\!10}{41\!\cdots\!29}a^{8}+\frac{12\!\cdots\!54}{41\!\cdots\!29}a^{7}-\frac{92\!\cdots\!17}{41\!\cdots\!29}a^{6}+\frac{67\!\cdots\!14}{41\!\cdots\!29}a^{5}-\frac{15\!\cdots\!01}{41\!\cdots\!29}a^{4}+\frac{66\!\cdots\!13}{41\!\cdots\!29}a^{3}-\frac{26\!\cdots\!57}{41\!\cdots\!29}a^{2}+\frac{43\!\cdots\!10}{41\!\cdots\!29}a+\frac{25\!\cdots\!32}{41\!\cdots\!29}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 3699.65687174 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 3699.65687174 \cdot 1492}{2\cdot\sqrt{1335225603550355658203125}}\cr\approx \mathstrut & 0.146961020387 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{85}) \), \(\Q(\zeta_{7})^+\), 4.0.614125.2, 6.6.1474514125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.12.0.1}{12} }$ | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | R | R | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/19.3.0.1}{3} }^{4}$ | ${\href{/padicField/23.3.0.1}{3} }^{4}$ | ${\href{/padicField/29.4.0.1}{4} }^{3}$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.3.0.1}{3} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{3}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}$ | ${\href{/padicField/47.12.0.1}{12} }$ | ${\href{/padicField/53.12.0.1}{12} }$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.12.9.3 | $x^{12} + 75 x^{4} - 375$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(7\) | 7.6.4.3 | $x^{6} + 18 x^{5} + 117 x^{4} + 338 x^{3} + 477 x^{2} + 792 x + 1210$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
7.6.4.3 | $x^{6} + 18 x^{5} + 117 x^{4} + 338 x^{3} + 477 x^{2} + 792 x + 1210$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
\(17\) | 17.12.9.3 | $x^{12} + 289 x^{4} - 68782$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |