Normalized defining polynomial
\( x^{12} - 4 x^{11} + 27 x^{10} - 68 x^{9} + 396 x^{8} - 934 x^{7} + 4774 x^{6} - 9889 x^{5} + 37692 x^{4} - 54863 x^{3} + 153377 x^{2} - 115667 x + 250879 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13334335014735765625=5^{6}\cdot 7^{8}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(805=5\cdot 7\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{805}(576,·)$, $\chi_{805}(1,·)$, $\chi_{805}(484,·)$, $\chi_{805}(459,·)$, $\chi_{805}(781,·)$, $\chi_{805}(114,·)$, $\chi_{805}(436,·)$, $\chi_{805}(599,·)$, $\chi_{805}(344,·)$, $\chi_{805}(116,·)$, $\chi_{805}(666,·)$, $\chi_{805}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{29} a^{10} + \frac{7}{29} a^{9} - \frac{7}{29} a^{8} + \frac{6}{29} a^{7} - \frac{8}{29} a^{6} - \frac{6}{29} a^{5} - \frac{1}{29} a^{4} - \frac{12}{29} a^{3} + \frac{3}{29} a$, $\frac{1}{209471550895307189273} a^{11} - \frac{1980913604578206304}{209471550895307189273} a^{10} + \frac{67885422228646478924}{209471550895307189273} a^{9} - \frac{73412374986704575857}{209471550895307189273} a^{8} + \frac{43552002639583641935}{209471550895307189273} a^{7} + \frac{3225014074930210724}{209471550895307189273} a^{6} - \frac{99890337486890096017}{209471550895307189273} a^{5} + \frac{37397897969918168463}{209471550895307189273} a^{4} + \frac{49034662200354491997}{209471550895307189273} a^{3} + \frac{17074554712908399761}{209471550895307189273} a^{2} + \frac{75089506143974493110}{209471550895307189273} a - \frac{2793209590556685701}{7223156927424385837}$
Class group and class number
$C_{3}\times C_{117}$, which has order $351$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104.882003477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-115}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{5}, \sqrt{-23})\), 6.0.3651620875.3, 6.0.29212967.1, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $23$ | 23.12.6.1 | $x^{12} + 365010 x^{6} - 6436343 x^{2} + 33308075025$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |