Normalized defining polynomial
\( x^{12} + 12 x^{10} + 54 x^{8} + 204 x^{6} + 657 x^{4} + 864 x^{2} + 1152 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13311666640442621952=2^{35}\cdot 3^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{24} a^{6} - \frac{1}{4} a^{4} - \frac{1}{8} a^{2}$, $\frac{1}{24} a^{7} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{48} a^{8} - \frac{1}{48} a^{7} - \frac{1}{8} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{3}{8} a^{2}$, $\frac{1}{96} a^{9} + \frac{1}{96} a^{7} + \frac{1}{32} a^{5} - \frac{1}{4} a^{4} - \frac{7}{32} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{672} a^{10} - \frac{1}{224} a^{8} - \frac{13}{672} a^{6} + \frac{3}{32} a^{4} + \frac{1}{14} a^{2} - \frac{2}{7}$, $\frac{1}{1344} a^{11} - \frac{1}{1344} a^{10} - \frac{1}{448} a^{9} + \frac{1}{448} a^{8} - \frac{13}{1344} a^{7} + \frac{13}{1344} a^{6} + \frac{3}{64} a^{5} - \frac{3}{64} a^{4} + \frac{1}{28} a^{3} + \frac{13}{28} a^{2} + \frac{5}{14} a + \frac{1}{7}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 78512.340758 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_3.C_2$ (as 12T41):
| A solvable group of order 72 |
| The 12 conjugacy class representatives for $C_2\times C_3:S_3.C_2$ |
| Character table for $C_2\times C_3:S_3.C_2$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.18432.2, 6.2.107495424.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.4 | $x^{4} + 12 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.8.24.7 | $x^{8} + 8 x^{7} + 12 x^{6} + 10 x^{4} + 8 x^{3} + 4 x^{2} + 8 x + 14$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.12.18.7 | $x^{12} - 3 x^{11} - 6 x^{10} - 3 x^{9} - 9 x^{8} - 12 x^{6} + 9 x^{5} + 9 x^{4} - 9 x^{3} - 9$ | $6$ | $2$ | $18$ | 12T41 | $[2, 2]_{2}^{4}$ |