Normalized defining polynomial
\( x^{12} - x^{11} + 43 x^{10} - 165 x^{9} + 2051 x^{8} + 13810 x^{7} + 85532 x^{6} + 330408 x^{5} + 2157136 x^{4} + 4877440 x^{3} + 10777600 x^{2} + 21504000 x + 40960000 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(132178191876990001953125=5^{9}\cdot 127^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(635=5\cdot 127\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{635}(128,·)$, $\chi_{635}(1,·)$, $\chi_{635}(488,·)$, $\chi_{635}(361,·)$, $\chi_{635}(234,·)$, $\chi_{635}(107,·)$, $\chi_{635}(527,·)$, $\chi_{635}(273,·)$, $\chi_{635}(146,·)$, $\chi_{635}(19,·)$, $\chi_{635}(509,·)$, $\chi_{635}(382,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{16} a^{5} + \frac{7}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{209162541440} a^{9} - \frac{265414601}{209162541440} a^{8} + \frac{6397007923}{209162541440} a^{7} - \frac{3508884249}{41832508288} a^{6} - \frac{6291890069}{209162541440} a^{5} + \frac{468633705}{20916254144} a^{4} + \frac{11299919683}{52290635360} a^{3} - \frac{4022647679}{26145317680} a^{2} + \frac{5720183381}{13072658840} a + \frac{102149082}{326816471}$, $\frac{1}{8366501657600} a^{10} - \frac{1}{8366501657600} a^{9} + \frac{98963988843}{8366501657600} a^{8} + \frac{5126201247}{1673300331520} a^{7} - \frac{52394303549}{8366501657600} a^{6} + \frac{136116209861}{836650165760} a^{5} + \frac{688574577783}{2091625414400} a^{4} - \frac{163338907099}{1045812707200} a^{3} - \frac{152736275179}{522906353600} a^{2} - \frac{1360395939}{13072658840} a - \frac{1114926}{326816471}$, $\frac{1}{334660066304000} a^{11} - \frac{1}{334660066304000} a^{10} + \frac{43}{334660066304000} a^{9} + \frac{1253869222367}{66932013260800} a^{8} - \frac{5927251645949}{334660066304000} a^{7} + \frac{1384437076581}{33466006630400} a^{6} + \frac{18078384229383}{83665016576000} a^{5} - \frac{2581253998699}{41832508288000} a^{4} + \frac{7586370854821}{20916254144000} a^{3} + \frac{185704190021}{522906353600} a^{2} + \frac{246473081}{13072658840} a + \frac{124448422}{326816471}$
Class group and class number
$C_{2}\times C_{74}$, which has order $148$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{21043491}{334660066304000} a^{11} + \frac{61126331}{334660066304000} a^{10} - \frac{944952953}{334660066304000} a^{9} + \frac{1015006827}{66932013260800} a^{8} - \frac{49773868641}{334660066304000} a^{7} - \frac{20840070587}{33466006630400} a^{6} - \frac{311586962953}{83665016576000} a^{5} - \frac{440571537931}{41832508288000} a^{4} - \frac{2179122172691}{20916254144000} a^{3} - \frac{1263611531}{26145317680} a^{2} - \frac{61126331}{653632942} a - \frac{20041420}{326816471} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 162763.773713 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.16129.1, \(\Q(\zeta_{5})\), 6.6.32518080125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $127$ | 127.12.8.1 | $x^{12} - 381 x^{9} + 48387 x^{6} - 2048383 x^{3} + 7023905307$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |