Normalized defining polynomial
\( x^{12} + 354 x^{10} - 4 x^{9} + 49098 x^{8} + 36 x^{7} + 3301706 x^{6} + 13800 x^{5} + 111289299 x^{4} + 2865640 x^{3} + 1955645292 x^{2} + 154582308 x + 14516726199 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(131961885606929070005069021184=2^{18}\cdot 3^{16}\cdot 61^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $267.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4392=2^{3}\cdot 3^{2}\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4392}(1,·)$, $\chi_{4392}(2917,·)$, $\chi_{4392}(2929,·)$, $\chi_{4392}(3049,·)$, $\chi_{4392}(1453,·)$, $\chi_{4392}(4381,·)$, $\chi_{4392}(1585,·)$, $\chi_{4392}(3061,·)$, $\chi_{4392}(121,·)$, $\chi_{4392}(1465,·)$, $\chi_{4392}(1597,·)$, $\chi_{4392}(133,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{10} a^{6} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{3}{10} a^{2} + \frac{1}{5} a - \frac{3}{10}$, $\frac{1}{10} a^{7} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{3}{10} a^{3} + \frac{1}{5} a^{2} - \frac{3}{10} a$, $\frac{1}{10} a^{8} - \frac{1}{5} a^{5} + \frac{3}{10} a^{4} - \frac{2}{5} a^{3} + \frac{3}{10} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{90} a^{9} - \frac{1}{30} a^{7} - \frac{1}{30} a^{6} - \frac{11}{30} a^{5} - \frac{1}{3} a^{4} + \frac{22}{45} a^{3} + \frac{11}{30} a^{2} - \frac{3}{10} a + \frac{1}{30}$, $\frac{1}{38605301868330} a^{10} + \frac{31903949683}{38605301868330} a^{9} + \frac{295671813667}{6434216978055} a^{8} + \frac{89758591643}{6434216978055} a^{7} - \frac{172222944751}{4289477985370} a^{6} - \frac{753920405621}{4289477985370} a^{5} - \frac{1620114187067}{7721060373666} a^{4} + \frac{1973044540679}{38605301868330} a^{3} - \frac{2359443922697}{6434216978055} a^{2} + \frac{1774283617688}{6434216978055} a + \frac{12560757643}{67728599769}$, $\frac{1}{78825466804026306232160910} a^{11} + \frac{55533483971}{15765093360805261246432182} a^{10} + \frac{43106523139069202501798}{39412733402013153116080455} a^{9} - \frac{193280230445491061837776}{13137577800671051038693485} a^{8} - \frac{202850919930041066360033}{5255031120268420415477394} a^{7} - \frac{236523900827558285402029}{26275155601342102077386970} a^{6} - \frac{212528366468572374529541}{736686605645105665721130} a^{5} + \frac{702203140626871893233849}{78825466804026306232160910} a^{4} + \frac{580212486665519511526507}{2074354389579639637688445} a^{3} - \frac{102017499803951746679033}{4379192600223683679564495} a^{2} - \frac{1360524982325285374964071}{13137577800671051038693485} a + \frac{328469924871094867471991}{691451463193213212562815}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{41574}$, which has order $1122498$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18105.42413749689 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{61}) \), \(\Q(\zeta_{9})^+\), 4.0.14526784.2, 6.6.1489222341.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.28 | $x^{12} - 52 x^{10} + 1100 x^{8} - 12000 x^{6} - 61072 x^{4} + 62144 x^{2} - 62144$ | $2$ | $6$ | $18$ | $C_{12}$ | $[3]^{6}$ |
| $3$ | 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| $61$ | 61.12.9.1 | $x^{12} - 122 x^{8} - 1484679 x^{4} - 2269810000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |