Normalized defining polynomial
\( x^{12} - 6 x^{11} + 25 x^{10} - 70 x^{9} + 257 x^{8} - 674 x^{7} + 1805 x^{6} - 3284 x^{5} + 8459 x^{4} - 12124 x^{3} + 24313 x^{2} - 18702 x + 48721 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13179165217344000000=2^{12}\cdot 3^{6}\cdot 5^{6}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(420=2^{2}\cdot 3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{420}(1,·)$, $\chi_{420}(419,·)$, $\chi_{420}(389,·)$, $\chi_{420}(391,·)$, $\chi_{420}(361,·)$, $\chi_{420}(299,·)$, $\chi_{420}(271,·)$, $\chi_{420}(149,·)$, $\chi_{420}(121,·)$, $\chi_{420}(59,·)$, $\chi_{420}(29,·)$, $\chi_{420}(31,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{13} a^{8} - \frac{4}{13} a^{7} - \frac{2}{13} a^{6} - \frac{6}{13} a^{5} - \frac{3}{13} a^{4} - \frac{6}{13} a^{3} - \frac{1}{13} a^{2} - \frac{5}{13} a + \frac{6}{13}$, $\frac{1}{13} a^{9} - \frac{5}{13} a^{7} - \frac{1}{13} a^{6} - \frac{1}{13} a^{5} - \frac{5}{13} a^{4} + \frac{1}{13} a^{3} + \frac{4}{13} a^{2} - \frac{1}{13} a - \frac{2}{13}$, $\frac{1}{3827473} a^{10} - \frac{5}{3827473} a^{9} + \frac{2402}{93353} a^{8} - \frac{393898}{3827473} a^{7} - \frac{46017}{93353} a^{6} - \frac{14331}{89011} a^{5} + \frac{477402}{3827473} a^{4} - \frac{38677}{89011} a^{3} + \frac{1166106}{3827473} a^{2} - \frac{1009520}{3827473} a - \frac{980131}{3827473}$, $\frac{1}{51605818459} a^{11} + \frac{6736}{51605818459} a^{10} + \frac{308912406}{51605818459} a^{9} + \frac{1258498105}{51605818459} a^{8} + \frac{21489196358}{51605818459} a^{7} + \frac{6519510693}{51605818459} a^{6} + \frac{15445173456}{51605818459} a^{5} - \frac{13757750142}{51605818459} a^{4} + \frac{392561776}{1258678499} a^{3} - \frac{16493321989}{51605818459} a^{2} - \frac{1417072467}{51605818459} a - \frac{724816238}{3969678343}$
Class group and class number
$C_{2}\times C_{52}$, which has order $104$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 246.505463083 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-105}) \), \(\Q(\sqrt{-15}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{7}, \sqrt{-15})\), \(\Q(\zeta_{28})^+\), 6.0.3630312000.2, 6.0.8103375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |