Normalized defining polynomial
\( x^{12} - 28 x^{10} + 281 x^{8} - 1204 x^{6} + 6092 x^{4} - 17192 x^{2} + 16900 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1313840315232157696=2^{24}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{88} a^{8} - \frac{7}{44} a^{6} - \frac{1}{2} a^{5} + \frac{43}{88} a^{4} - \frac{7}{44} a^{2} - \frac{1}{2} a + \frac{21}{44}$, $\frac{1}{440} a^{9} - \frac{51}{220} a^{7} - \frac{1}{2} a^{6} + \frac{219}{440} a^{5} - \frac{19}{44} a^{3} - \frac{1}{2} a^{2} + \frac{21}{220} a$, $\frac{1}{138127000} a^{10} + \frac{114913}{138127000} a^{8} - \frac{1}{2} a^{7} + \frac{2960289}{138127000} a^{6} - \frac{1}{2} a^{5} - \frac{5341101}{27625400} a^{4} - \frac{1}{2} a^{3} + \frac{6625439}{17265875} a^{2} - \frac{1}{2} a - \frac{625753}{2762540}$, $\frac{1}{3591302000} a^{11} + \frac{842269}{1795651000} a^{9} + \frac{1362255539}{3591302000} a^{7} - \frac{1}{2} a^{6} - \frac{37359263}{359130200} a^{5} - \frac{1}{2} a^{4} - \frac{329803119}{1795651000} a^{3} - \frac{1}{2} a^{2} - \frac{3711901}{8978255} a - \frac{1}{2}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{447687}{1795651000} a^{11} + \frac{5666147}{897825500} a^{9} - \frac{94347093}{1795651000} a^{7} + \frac{25897791}{179565100} a^{5} - \frac{875051747}{897825500} a^{3} + \frac{10673288}{8978255} a \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 103831.352805 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_6$ |
| Character table for $D_6$ |
Intermediate fields
| \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), 3.1.4232.1 x3, \(\Q(\zeta_{8})\), 6.0.143278592.1, 6.2.573114368.1 x3, 6.0.286557184.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| $23$ | 23.6.4.1 | $x^{6} + 460 x^{3} + 181447$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 23.6.4.1 | $x^{6} + 460 x^{3} + 181447$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |