Normalized defining polynomial
\( x^{12} + 6 x^{10} - 8 x^{9} + 45 x^{8} - 12 x^{7} - 46 x^{6} + 108 x^{5} + 9 x^{4} - 76 x^{3} + 108 x^{2} - 48 x + 16 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1283918464548864=2^{28}\cdot 3^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{5} - \frac{1}{3} a^{3} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{144} a^{10} - \frac{1}{72} a^{9} - \frac{5}{72} a^{8} + \frac{1}{36} a^{7} - \frac{1}{48} a^{6} + \frac{5}{72} a^{5} - \frac{1}{24} a^{4} + \frac{1}{9} a^{3} + \frac{1}{144} a^{2} - \frac{7}{72} a + \frac{17}{36}$, $\frac{1}{6161760} a^{11} - \frac{5123}{3080880} a^{10} - \frac{10961}{342320} a^{9} - \frac{12335}{102696} a^{8} + \frac{32633}{1232352} a^{7} + \frac{20209}{280080} a^{6} - \frac{263407}{3080880} a^{5} - \frac{273811}{770220} a^{4} + \frac{1069697}{6161760} a^{3} - \frac{541529}{3080880} a^{2} + \frac{36351}{171160} a + \frac{99251}{385110}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2491}{85580} a^{11} - \frac{1449}{85580} a^{10} - \frac{8311}{42790} a^{9} + \frac{3143}{25674} a^{8} - \frac{22035}{17116} a^{7} - \frac{2203}{7780} a^{6} + \frac{100511}{128370} a^{5} - \frac{101781}{42790} a^{4} - \frac{81927}{85580} a^{3} + \frac{327649}{256740} a^{2} - \frac{60309}{21395} a + \frac{25516}{21395} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1590.92800548 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_3\wr C_2$ (as 12T77):
| A solvable group of order 144 |
| The 18 conjugacy class representatives for $C_2\times S_3\wr C_2$ |
| Character table for $C_2\times S_3\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{2}, \sqrt{-3})\), 6.4.11943936.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.8.22.9 | $x^{8} + 2 x^{4} + 4$ | $4$ | $2$ | $22$ | $D_4\times C_2$ | $[2, 3, 4]^{2}$ | |
| $3$ | 3.12.14.5 | $x^{12} - 12 x^{11} - 3 x^{10} - 9 x^{7} + 9 x^{5} + 9 x^{2} + 9$ | $6$ | $2$ | $14$ | $S_3^2$ | $[3/2, 3/2]_{2}^{2}$ |