Properties

Label 12.0.12500000000...0000.6
Degree $12$
Signature $[0, 6]$
Discriminant $2^{16}\cdot 5^{19}$
Root discriminant $32.22$
Ramified primes $2, 5$
Class number $2$
Class group $[2]$
Galois group $A_5:C_4$ (as 12T124)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![220, -120, -120, 0, 100, 120, -20, -20, 0, 0, 4, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 4*x^10 - 20*x^7 - 20*x^6 + 120*x^5 + 100*x^4 - 120*x^2 - 120*x + 220)
 
gp: K = bnfinit(x^12 - 4*x^11 + 4*x^10 - 20*x^7 - 20*x^6 + 120*x^5 + 100*x^4 - 120*x^2 - 120*x + 220, 1)
 

Normalized defining polynomial

\( x^{12} - 4 x^{11} + 4 x^{10} - 20 x^{7} - 20 x^{6} + 120 x^{5} + 100 x^{4} - 120 x^{2} - 120 x + 220 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1250000000000000000=2^{16}\cdot 5^{19}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $32.22$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{158643620} a^{11} - \frac{679028}{39660905} a^{10} + \frac{395743}{7932181} a^{9} - \frac{3184641}{31728724} a^{8} - \frac{314385}{31728724} a^{7} - \frac{3603255}{31728724} a^{6} - \frac{3118399}{15864362} a^{5} + \frac{2460557}{7932181} a^{4} + \frac{1566684}{7932181} a^{3} - \frac{990974}{7932181} a^{2} + \frac{2250541}{15864362} a - \frac{7160039}{15864362}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 17844.9782708 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$A_5:C_4$ (as 12T124):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 240
The 14 conjugacy class representatives for $A_5:C_4$
Character table for $A_5:C_4$

Intermediate fields

6.2.31250000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 sibling: data not computed
Degree 24 siblings: data not computed
Degree 40 siblings: data not computed
Arithmetically equvalently siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/13.12.0.1}{12} }$ ${\href{/LocalNumberField/17.12.0.1}{12} }$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/47.12.0.1}{12} }$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.16.18$x^{12} + x^{10} + 6 x^{8} - 3 x^{6} + 6 x^{4} + x^{2} - 3$$6$$2$$16$$C_3 : C_4$$[2]_{3}^{2}$
$5$$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
5.10.19.2$x^{10} + 80$$10$$1$$19$$F_5$$[9/4]_{4}$