Normalized defining polynomial
\( x^{12} - 2 x^{11} - 6 x^{10} + 5 x^{9} + 74 x^{8} - 225 x^{7} + 308 x^{6} - 373 x^{5} + 786 x^{4} - 1433 x^{3} + 1678 x^{2} - 1203 x + 471 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1222605980803089=3^{6}\cdot 109^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{8} - \frac{1}{3} a^{4} - \frac{4}{9} a^{2} - \frac{1}{3}$, $\frac{1}{45} a^{9} - \frac{1}{45} a^{8} - \frac{2}{15} a^{7} - \frac{1}{5} a^{5} - \frac{2}{15} a^{4} + \frac{8}{45} a^{3} - \frac{14}{45} a^{2} - \frac{4}{15} a + \frac{4}{15}$, $\frac{1}{135} a^{10} - \frac{7}{135} a^{8} - \frac{2}{45} a^{7} + \frac{7}{45} a^{6} + \frac{2}{9} a^{5} + \frac{32}{135} a^{4} - \frac{2}{45} a^{3} + \frac{4}{135} a^{2} + \frac{1}{3} a - \frac{11}{45}$, $\frac{1}{1574298315} a^{11} - \frac{287728}{1574298315} a^{10} + \frac{2743912}{314859663} a^{9} - \frac{43541117}{1574298315} a^{8} + \frac{11137393}{174922035} a^{7} - \frac{5275319}{58307345} a^{6} + \frac{559624034}{1574298315} a^{5} + \frac{112178596}{1574298315} a^{4} + \frac{579890023}{1574298315} a^{3} + \frac{45240175}{314859663} a^{2} + \frac{139378696}{524766105} a + \frac{240840101}{524766105}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{561}{66485} a^{11} + \frac{1531}{598365} a^{10} + \frac{38101}{598365} a^{9} + \frac{4231}{66485} a^{8} - \frac{116531}{199455} a^{7} + \frac{167267}{199455} a^{6} - \frac{7705}{13297} a^{5} + \frac{784013}{598365} a^{4} - \frac{2325118}{598365} a^{3} + \frac{920099}{199455} a^{2} - \frac{612898}{199455} a + \frac{90172}{66485} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3227.94367202 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_6$ |
| Character table for $D_6$ |
Intermediate fields
| \(\Q(\sqrt{-327}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{109}) \), 3.1.327.1 x3, \(\Q(\sqrt{-3}, \sqrt{109})\), 6.0.34965783.1, 6.0.320787.2 x3, 6.2.11655261.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $109$ | 109.2.1.1 | $x^{2} - 109$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 109.2.1.1 | $x^{2} - 109$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.1 | $x^{2} - 109$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.1 | $x^{2} - 109$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.1 | $x^{2} - 109$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.1 | $x^{2} - 109$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |