Normalized defining polynomial
\( x^{12} - 6 x^{11} + 63 x^{10} - 260 x^{9} + 1995 x^{8} - 6486 x^{7} + 39033 x^{6} - 95424 x^{5} + 490488 x^{4} - 829016 x^{3} + 3879852 x^{2} - 3480240 x + 14609528 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(121637404636973946372096=2^{18}\cdot 3^{16}\cdot 47^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3384=2^{3}\cdot 3^{2}\cdot 47\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3384}(1,·)$, $\chi_{3384}(2821,·)$, $\chi_{3384}(2257,·)$, $\chi_{3384}(1033,·)$, $\chi_{3384}(1693,·)$, $\chi_{3384}(2161,·)$, $\chi_{3384}(565,·)$, $\chi_{3384}(1129,·)$, $\chi_{3384}(2725,·)$, $\chi_{3384}(3289,·)$, $\chi_{3384}(1597,·)$, $\chi_{3384}(469,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4}$, $\frac{1}{68} a^{9} + \frac{1}{17} a^{8} - \frac{2}{17} a^{7} - \frac{1}{34} a^{6} + \frac{7}{68} a^{5} - \frac{3}{34} a^{4} - \frac{5}{17} a^{3} + \frac{1}{17} a^{2} + \frac{5}{17} a$, $\frac{1}{105214447652} a^{10} - \frac{5}{105214447652} a^{9} + \frac{2691286921}{26303611913} a^{8} + \frac{2386658280}{26303611913} a^{7} + \frac{22779182087}{105214447652} a^{6} - \frac{22839926463}{105214447652} a^{5} + \frac{210197011}{3094542578} a^{4} - \frac{578946707}{1384400627} a^{3} - \frac{23393275093}{52607223826} a^{2} - \frac{10456420633}{26303611913} a + \frac{295901993}{1547271289}$, $\frac{1}{1469530190355484} a^{11} + \frac{3489}{734765095177742} a^{10} + \frac{8489811776489}{1469530190355484} a^{9} + \frac{18487127849963}{734765095177742} a^{8} + \frac{182664184997331}{1469530190355484} a^{7} - \frac{63077565440976}{367382547588871} a^{6} + \frac{335825330699347}{1469530190355484} a^{5} + \frac{59150149225479}{734765095177742} a^{4} - \frac{38270476538528}{367382547588871} a^{3} + \frac{55909323346551}{734765095177742} a^{2} + \frac{62182221201306}{367382547588871} a - \frac{2620401117262}{21610738093463}$
Class group and class number
$C_{3}\times C_{3660}$, which has order $10980$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 481.70037561485367 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-47}) \), \(\Q(\sqrt{-94}) \), \(\Q(\sqrt{2}) \), \(\Q(\zeta_{9})^+\), \(\Q(\sqrt{2}, \sqrt{-47})\), 6.0.681182703.2, 6.0.348765543936.8, 6.6.3359232.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $3$ | 3.6.8.3 | $x^{6} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ |
| 3.6.8.3 | $x^{6} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| $47$ | 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |