Properties

Label 12.0.12060860765625.1
Degree $12$
Signature $[0, 6]$
Discriminant $1.206\times 10^{13}$
Root discriminant \(12.31\)
Ramified primes $3,5,7$
Class number $1$
Class group trivial
Galois group $C_6\times S_3$ (as 12T18)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 6*x^10 - 3*x^9 + 3*x^8 - 9*x^7 - 9*x^6 + 9*x^5 + 3*x^4 + 3*x^3 + 6*x^2 + 1)
 
gp: K = bnfinit(y^12 + 6*y^10 - 3*y^9 + 3*y^8 - 9*y^7 - 9*y^6 + 9*y^5 + 3*y^4 + 3*y^3 + 6*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 + 6*x^10 - 3*x^9 + 3*x^8 - 9*x^7 - 9*x^6 + 9*x^5 + 3*x^4 + 3*x^3 + 6*x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 + 6*x^10 - 3*x^9 + 3*x^8 - 9*x^7 - 9*x^6 + 9*x^5 + 3*x^4 + 3*x^3 + 6*x^2 + 1)
 

\( x^{12} + 6x^{10} - 3x^{9} + 3x^{8} - 9x^{7} - 9x^{6} + 9x^{5} + 3x^{4} + 3x^{3} + 6x^{2} + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(12060860765625\) \(\medspace = 3^{8}\cdot 5^{6}\cdot 7^{6}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(12.31\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{4/3}5^{1/2}7^{1/2}\approx 25.597390575239302$
Ramified primes:   \(3\), \(5\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $6$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3}a^{8}+\frac{1}{3}a^{7}-\frac{1}{3}a^{6}-\frac{1}{3}a^{5}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{9}+\frac{1}{3}a^{7}-\frac{1}{3}a^{4}+\frac{1}{3}a^{3}-\frac{1}{3}a-\frac{1}{3}$, $\frac{1}{27}a^{10}-\frac{4}{27}a^{9}-\frac{4}{27}a^{8}+\frac{1}{3}a^{7}-\frac{10}{27}a^{6}+\frac{13}{27}a^{5}+\frac{10}{27}a^{4}+\frac{1}{3}a^{3}+\frac{4}{27}a^{2}-\frac{4}{27}a-\frac{1}{27}$, $\frac{1}{351}a^{11}+\frac{5}{351}a^{10}+\frac{5}{351}a^{9}+\frac{1}{39}a^{8}+\frac{152}{351}a^{7}+\frac{49}{351}a^{6}+\frac{145}{351}a^{5}+\frac{5}{39}a^{4}+\frac{85}{351}a^{3}+\frac{77}{351}a^{2}-\frac{64}{351}a-\frac{11}{39}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{88}{351}a^{11}+\frac{206}{351}a^{10}+\frac{557}{351}a^{9}+\frac{101}{39}a^{8}-\frac{196}{351}a^{7}-\frac{602}{351}a^{6}-\frac{2450}{351}a^{5}-\frac{145}{39}a^{4}+\frac{2332}{351}a^{3}+\frac{1745}{351}a^{2}+\frac{452}{351}a+\frac{24}{13}$, $\frac{19}{39}a^{11}-\frac{40}{117}a^{10}+\frac{337}{117}a^{9}-\frac{410}{117}a^{8}+\frac{31}{13}a^{7}-\frac{626}{117}a^{6}-\frac{55}{117}a^{5}+\frac{797}{117}a^{4}-\frac{10}{39}a^{3}-\frac{187}{117}a^{2}+\frac{187}{117}a-\frac{92}{117}$, $a$, $\frac{112}{117}a^{11}-\frac{64}{117}a^{10}+\frac{638}{117}a^{9}-\frac{236}{39}a^{8}+\frac{332}{117}a^{7}-\frac{1025}{117}a^{6}-\frac{530}{117}a^{5}+\frac{640}{39}a^{4}-\frac{35}{117}a^{3}-\frac{307}{117}a^{2}+\frac{437}{117}a-\frac{36}{13}$, $\frac{206}{351}a^{11}+\frac{29}{351}a^{10}+\frac{391}{117}a^{9}-\frac{460}{351}a^{8}+\frac{190}{351}a^{7}-\frac{1658}{351}a^{6}-\frac{233}{39}a^{5}+\frac{2068}{351}a^{4}+\frac{1481}{351}a^{3}-\frac{76}{351}a^{2}+\frac{37}{13}a+\frac{263}{351}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 42.05225160280841 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 42.05225160280841 \cdot 1}{2\cdot\sqrt{12060860765625}}\cr\approx \mathstrut & 0.372519761928199 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 + 6*x^10 - 3*x^9 + 3*x^8 - 9*x^7 - 9*x^6 + 9*x^5 + 3*x^4 + 3*x^3 + 6*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 + 6*x^10 - 3*x^9 + 3*x^8 - 9*x^7 - 9*x^6 + 9*x^5 + 3*x^4 + 3*x^3 + 6*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 + 6*x^10 - 3*x^9 + 3*x^8 - 9*x^7 - 9*x^6 + 9*x^5 + 3*x^4 + 3*x^3 + 6*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 + 6*x^10 - 3*x^9 + 3*x^8 - 9*x^7 - 9*x^6 + 9*x^5 + 3*x^4 + 3*x^3 + 6*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6\times S_3$ (as 12T18):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 18 conjugacy class representatives for $C_6\times S_3$
Character table for $C_6\times S_3$

Intermediate fields

\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{-7})\), 6.0.3472875.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 36
Degree 18 siblings: deg 18, 18.0.178078914380413077609375.1
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.6.0.1}{6} }^{2}$ R R R ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{6}$ ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}$ ${\href{/padicField/17.6.0.1}{6} }^{2}$ ${\href{/padicField/19.2.0.1}{2} }^{6}$ ${\href{/padicField/23.6.0.1}{6} }^{2}$ ${\href{/padicField/29.3.0.1}{3} }^{4}$ ${\href{/padicField/31.6.0.1}{6} }^{2}$ ${\href{/padicField/37.2.0.1}{2} }^{6}$ ${\href{/padicField/41.6.0.1}{6} }^{2}$ ${\href{/padicField/43.6.0.1}{6} }^{2}$ ${\href{/padicField/47.6.0.1}{6} }{,}\,{\href{/padicField/47.2.0.1}{2} }^{3}$ ${\href{/padicField/53.2.0.1}{2} }^{6}$ ${\href{/padicField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.2.0.1$x^{2} + 2 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.2.0.1$x^{2} + 2 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.2.0.1$x^{2} + 2 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.6.8.3$x^{6} + 18 x^{5} + 114 x^{4} + 326 x^{3} + 570 x^{2} + 528 x + 197$$3$$2$$8$$C_6$$[2]^{2}$
\(5\) Copy content Toggle raw display 5.12.6.1$x^{12} + 120 x^{11} + 6032 x^{10} + 163208 x^{9} + 2529528 x^{8} + 21853448 x^{7} + 92223962 x^{6} + 138649448 x^{5} + 223472880 x^{4} + 401794296 x^{3} + 295909124 x^{2} + 118616440 x + 126881009$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(7\) Copy content Toggle raw display 7.12.6.1$x^{12} + 44 x^{10} + 10 x^{9} + 786 x^{8} + 22 x^{7} + 6899 x^{6} - 3434 x^{5} + 31050 x^{4} - 28440 x^{3} + 84557 x^{2} - 48082 x + 107648$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.5.2t1.a.a$1$ $ 5 $ \(\Q(\sqrt{5}) \) $C_2$ (as 2T1) $1$ $1$
* 1.35.2t1.a.a$1$ $ 5 \cdot 7 $ \(\Q(\sqrt{-35}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.7.2t1.a.a$1$ $ 7 $ \(\Q(\sqrt{-7}) \) $C_2$ (as 2T1) $1$ $-1$
1.9.3t1.a.a$1$ $ 3^{2}$ \(\Q(\zeta_{9})^+\) $C_3$ (as 3T1) $0$ $1$
1.9.3t1.a.b$1$ $ 3^{2}$ \(\Q(\zeta_{9})^+\) $C_3$ (as 3T1) $0$ $1$
1.315.6t1.h.a$1$ $ 3^{2} \cdot 5 \cdot 7 $ 6.0.281302875.3 $C_6$ (as 6T1) $0$ $-1$
1.315.6t1.h.b$1$ $ 3^{2} \cdot 5 \cdot 7 $ 6.0.281302875.3 $C_6$ (as 6T1) $0$ $-1$
1.63.6t1.c.a$1$ $ 3^{2} \cdot 7 $ 6.0.2250423.1 $C_6$ (as 6T1) $0$ $-1$
1.45.6t1.a.a$1$ $ 3^{2} \cdot 5 $ 6.6.820125.1 $C_6$ (as 6T1) $0$ $1$
1.45.6t1.a.b$1$ $ 3^{2} \cdot 5 $ 6.6.820125.1 $C_6$ (as 6T1) $0$ $1$
1.63.6t1.c.b$1$ $ 3^{2} \cdot 7 $ 6.0.2250423.1 $C_6$ (as 6T1) $0$ $-1$
2.2835.3t2.a.a$2$ $ 3^{4} \cdot 5 \cdot 7 $ 3.1.2835.1 $S_3$ (as 3T2) $1$ $0$
2.2835.6t3.c.a$2$ $ 3^{4} \cdot 5 \cdot 7 $ 6.2.40186125.1 $D_{6}$ (as 6T3) $1$ $0$
* 2.315.12t18.a.a$2$ $ 3^{2} \cdot 5 \cdot 7 $ 12.0.12060860765625.1 $C_6\times S_3$ (as 12T18) $0$ $0$
* 2.315.6t5.a.a$2$ $ 3^{2} \cdot 5 \cdot 7 $ 6.0.3472875.1 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.315.12t18.a.b$2$ $ 3^{2} \cdot 5 \cdot 7 $ 12.0.12060860765625.1 $C_6\times S_3$ (as 12T18) $0$ $0$
* 2.315.6t5.a.b$2$ $ 3^{2} \cdot 5 \cdot 7 $ 6.0.3472875.1 $S_3\times C_3$ (as 6T5) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.