Normalized defining polynomial
\( x^{12} - 33 x^{10} - 140 x^{9} + 1575 x^{8} + 8820 x^{7} - 709 x^{6} - 206640 x^{5} - 346269 x^{4} + \cdots + 71323433 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(120538181723674419070377725952\) \(\medspace = 2^{12}\cdot 3^{16}\cdot 7^{8}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(265.11\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 3^{4/3}7^{2/3}17^{3/4}\approx 265.1105758191317$ | ||
Ramified primes: | \(2\), \(3\), \(7\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(4284=2^{2}\cdot 3^{2}\cdot 7\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{4284}(1,·)$, $\chi_{4284}(1891,·)$, $\chi_{4284}(2209,·)$, $\chi_{4284}(1135,·)$, $\chi_{4284}(3469,·)$, $\chi_{4284}(2095,·)$, $\chi_{4284}(3025,·)$, $\chi_{4284}(205,·)$, $\chi_{4284}(1075,·)$, $\chi_{4284}(1339,·)$, $\chi_{4284}(3229,·)$, $\chi_{4284}(319,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.78608.1$^{2}$, 12.0.120538181723674419070377725952.2$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{3799929922}a^{10}-\frac{11003305}{1899964961}a^{9}+\frac{436200953}{1899964961}a^{8}-\frac{799634671}{3799929922}a^{7}+\frac{1533878101}{3799929922}a^{6}-\frac{1647538615}{3799929922}a^{5}+\frac{939853093}{3799929922}a^{4}-\frac{947808605}{1899964961}a^{3}+\frac{418642041}{3799929922}a^{2}+\frac{172426875}{3799929922}a+\frac{383965168}{1899964961}$, $\frac{1}{37\!\cdots\!18}a^{11}-\frac{6111613513}{18\!\cdots\!09}a^{10}+\frac{39\!\cdots\!02}{18\!\cdots\!09}a^{9}-\frac{18\!\cdots\!41}{37\!\cdots\!18}a^{8}-\frac{10\!\cdots\!93}{37\!\cdots\!18}a^{7}+\frac{17\!\cdots\!33}{37\!\cdots\!18}a^{6}-\frac{11\!\cdots\!29}{37\!\cdots\!18}a^{5}+\frac{62\!\cdots\!46}{18\!\cdots\!09}a^{4}-\frac{16\!\cdots\!53}{37\!\cdots\!18}a^{3}+\frac{56\!\cdots\!13}{37\!\cdots\!18}a^{2}+\frac{89\!\cdots\!63}{18\!\cdots\!09}a-\frac{73\!\cdots\!28}{18\!\cdots\!09}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{22}\times C_{4818}$, which has order $105996$ (assuming GRH)
Relative class number: $35332$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{266472244369404}{18\!\cdots\!09}a^{11}-\frac{22\!\cdots\!74}{18\!\cdots\!09}a^{10}-\frac{105209114730024}{18\!\cdots\!09}a^{9}+\frac{24\!\cdots\!51}{18\!\cdots\!09}a^{8}+\frac{39\!\cdots\!96}{18\!\cdots\!09}a^{7}-\frac{15\!\cdots\!88}{18\!\cdots\!09}a^{6}-\frac{44\!\cdots\!18}{18\!\cdots\!09}a^{5}-\frac{52\!\cdots\!16}{18\!\cdots\!09}a^{4}+\frac{17\!\cdots\!98}{18\!\cdots\!09}a^{3}+\frac{17\!\cdots\!93}{18\!\cdots\!09}a^{2}-\frac{21\!\cdots\!64}{18\!\cdots\!09}a-\frac{36\!\cdots\!08}{18\!\cdots\!09}$, $\frac{231807887141616}{18\!\cdots\!09}a^{11}-\frac{20\!\cdots\!44}{18\!\cdots\!09}a^{10}-\frac{47336365467116}{18\!\cdots\!09}a^{9}+\frac{22\!\cdots\!61}{18\!\cdots\!09}a^{8}+\frac{34\!\cdots\!24}{18\!\cdots\!09}a^{7}-\frac{13\!\cdots\!38}{18\!\cdots\!09}a^{6}-\frac{40\!\cdots\!52}{18\!\cdots\!09}a^{5}-\frac{46\!\cdots\!21}{18\!\cdots\!09}a^{4}+\frac{15\!\cdots\!72}{18\!\cdots\!09}a^{3}+\frac{16\!\cdots\!38}{18\!\cdots\!09}a^{2}-\frac{16\!\cdots\!36}{18\!\cdots\!09}a-\frac{43\!\cdots\!44}{18\!\cdots\!09}$, $\frac{7560}{1899964961}a^{11}-\frac{14064}{1899964961}a^{10}-\frac{297360}{1899964961}a^{9}-\frac{113250}{1899964961}a^{8}+\frac{13786920}{1899964961}a^{7}+\frac{36981988}{1899964961}a^{6}-\frac{200418540}{1899964961}a^{5}-\frac{1168255170}{1899964961}a^{4}+\frac{1527535940}{1899964961}a^{3}+\frac{26201869086}{1899964961}a^{2}+\frac{82385572080}{1899964961}a+\frac{102912083971}{1899964961}$, $\frac{969746255375256}{18\!\cdots\!09}a^{11}-\frac{33\!\cdots\!60}{18\!\cdots\!09}a^{10}-\frac{29\!\cdots\!56}{18\!\cdots\!09}a^{9}+\frac{11\!\cdots\!11}{18\!\cdots\!09}a^{8}+\frac{16\!\cdots\!04}{18\!\cdots\!09}a^{7}+\frac{22\!\cdots\!34}{18\!\cdots\!09}a^{6}-\frac{23\!\cdots\!12}{18\!\cdots\!09}a^{5}-\frac{11\!\cdots\!51}{18\!\cdots\!09}a^{4}+\frac{30\!\cdots\!32}{18\!\cdots\!09}a^{3}+\frac{27\!\cdots\!72}{18\!\cdots\!09}a^{2}+\frac{78\!\cdots\!84}{18\!\cdots\!09}a+\frac{54\!\cdots\!46}{18\!\cdots\!09}$, $\frac{772602725461428}{18\!\cdots\!09}a^{11}-\frac{16\!\cdots\!46}{18\!\cdots\!09}a^{10}-\frac{29\!\cdots\!48}{18\!\cdots\!09}a^{9}-\frac{86\!\cdots\!60}{18\!\cdots\!09}a^{8}+\frac{13\!\cdots\!52}{18\!\cdots\!09}a^{7}+\frac{34\!\cdots\!22}{18\!\cdots\!09}a^{6}-\frac{19\!\cdots\!26}{18\!\cdots\!09}a^{5}-\frac{11\!\cdots\!25}{18\!\cdots\!09}a^{4}+\frac{16\!\cdots\!86}{18\!\cdots\!09}a^{3}+\frac{25\!\cdots\!89}{18\!\cdots\!09}a^{2}+\frac{79\!\cdots\!92}{18\!\cdots\!09}a+\frac{94\!\cdots\!72}{18\!\cdots\!09}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 23314.354920427802 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 23314.354920427802 \cdot 105996}{2\cdot\sqrt{120538181723674419070377725952}}\cr\approx \mathstrut & 0.218977642833237 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 3.3.3969.2, 4.0.78608.1, 6.6.77394297393.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{3}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{3}$ | ${\href{/padicField/13.3.0.1}{3} }^{4}$ | R | ${\href{/padicField/19.3.0.1}{3} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.3.0.1}{3} }^{4}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.6.6.5 | $x^{6} + 6 x^{5} + 32 x^{4} + 90 x^{3} + 199 x^{2} + 204 x + 149$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
2.6.6.5 | $x^{6} + 6 x^{5} + 32 x^{4} + 90 x^{3} + 199 x^{2} + 204 x + 149$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
\(3\) | 3.12.16.25 | $x^{12} + 24 x^{11} + 216 x^{10} + 804 x^{9} + 216 x^{8} - 6480 x^{7} - 11610 x^{6} + 16200 x^{5} + 48600 x^{4} + 33156 x^{3} + 198936 x^{2} + 190593$ | $3$ | $4$ | $16$ | $C_{12}$ | $[2]^{4}$ |
\(7\) | 7.12.8.2 | $x^{12} - 70 x^{9} + 1519 x^{6} - 4802 x^{3} + 21609$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |