Normalized defining polynomial
\( x^{12} - x^{11} + 368 x^{10} - 116 x^{9} + 55273 x^{8} + 10728 x^{7} + 4325484 x^{6} + 2029774 x^{5} + 186438691 x^{4} + 87932303 x^{3} + 4234486768 x^{2} + 1214690007 x + 39941506541 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11952055518954678517578125=5^{9}\cdot 7^{8}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $122.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3535=5\cdot 7\cdot 101\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3535}(1,·)$, $\chi_{3535}(3334,·)$, $\chi_{3535}(807,·)$, $\chi_{3535}(809,·)$, $\chi_{3535}(1516,·)$, $\chi_{3535}(2829,·)$, $\chi_{3535}(302,·)$, $\chi_{3535}(2928,·)$, $\chi_{3535}(403,·)$, $\chi_{3535}(2423,·)$, $\chi_{3535}(1817,·)$, $\chi_{3535}(506,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{701} a^{9} + \frac{75}{701} a^{8} - \frac{61}{701} a^{7} - \frac{289}{701} a^{6} - \frac{11}{701} a^{5} + \frac{203}{701} a^{4} + \frac{210}{701} a^{3} + \frac{169}{701} a^{2} + \frac{208}{701} a + \frac{64}{701}$, $\frac{1}{701} a^{10} - \frac{78}{701} a^{8} + \frac{80}{701} a^{7} - \frac{67}{701} a^{6} + \frac{327}{701} a^{5} - \frac{294}{701} a^{4} - \frac{159}{701} a^{3} + \frac{151}{701} a^{2} - \frac{114}{701} a + \frac{107}{701}$, $\frac{1}{911076462885322170929450768392257203591} a^{11} - \frac{647061779792917868726747015744677915}{911076462885322170929450768392257203591} a^{10} - \frac{437526982157116162134703595387220633}{911076462885322170929450768392257203591} a^{9} - \frac{257959987384648467064992799456974947770}{911076462885322170929450768392257203591} a^{8} - \frac{194716607909650415418802211702995903949}{911076462885322170929450768392257203591} a^{7} + \frac{2198206657726986852083905576348878633}{31416429754666281756187957530767489779} a^{6} - \frac{420276633838320080872675790426747170094}{911076462885322170929450768392257203591} a^{5} - \frac{152125419004535641290379897366843028936}{911076462885322170929450768392257203591} a^{4} + \frac{187402264639288411323284326468720712375}{911076462885322170929450768392257203591} a^{3} + \frac{429732113870892731875891096251493892126}{911076462885322170929450768392257203591} a^{2} - \frac{43108054760825223852378388345553065764}{911076462885322170929450768392257203591} a + \frac{7457034367464304310196112804010722935}{31416429754666281756187957530767489779}$
Class group and class number
$C_{52}\times C_{5044}$, which has order $262288$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104.882003477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.1275125.2, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| $101$ | 101.6.3.1 | $x^{6} - 202 x^{4} + 10201 x^{2} - 124666421$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 101.6.3.1 | $x^{6} - 202 x^{4} + 10201 x^{2} - 124666421$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |