Properties

Label 12.0.11948427342...000.19
Degree $12$
Signature $[0, 6]$
Discriminant $2^{24}\cdot 3^{18}\cdot 5^{6}\cdot 7^{6}$
Root discriminant $122.96$
Ramified primes $2, 3, 5, 7$
Class number $116848$ (GRH)
Class group $[2, 2, 29212]$ (GRH)
Galois group $C_6\times C_2$ (as 12T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1838265625, 0, 1890787500, 0, 157565625, 0, 4802000, 0, 66150, 0, 420, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 420*x^10 + 66150*x^8 + 4802000*x^6 + 157565625*x^4 + 1890787500*x^2 + 1838265625)
 
gp: K = bnfinit(x^12 + 420*x^10 + 66150*x^8 + 4802000*x^6 + 157565625*x^4 + 1890787500*x^2 + 1838265625, 1)
 

Normalized defining polynomial

\( x^{12} + 420 x^{10} + 66150 x^{8} + 4802000 x^{6} + 157565625 x^{4} + 1890787500 x^{2} + 1838265625 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(11948427342082473984000000=2^{24}\cdot 3^{18}\cdot 5^{6}\cdot 7^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $122.96$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2520=2^{3}\cdot 3^{2}\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{2520}(1,·)$, $\chi_{2520}(419,·)$, $\chi_{2520}(1189,·)$, $\chi_{2520}(71,·)$, $\chi_{2520}(841,·)$, $\chi_{2520}(1259,·)$, $\chi_{2520}(2029,·)$, $\chi_{2520}(911,·)$, $\chi_{2520}(1681,·)$, $\chi_{2520}(2099,·)$, $\chi_{2520}(1751,·)$, $\chi_{2520}(349,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{35} a^{2}$, $\frac{1}{35} a^{3}$, $\frac{1}{1225} a^{4}$, $\frac{1}{1225} a^{5}$, $\frac{1}{42875} a^{6}$, $\frac{1}{42875} a^{7}$, $\frac{1}{1500625} a^{8}$, $\frac{1}{1500625} a^{9}$, $\frac{1}{52521875} a^{10}$, $\frac{1}{52521875} a^{11}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{29212}$, which has order $116848$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 325.67540279491664 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_6$ (as 12T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 12
The 12 conjugacy class representatives for $C_6\times C_2$
Character table for $C_6\times C_2$

Intermediate fields

\(\Q(\sqrt{-210}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\sqrt{3}, \sqrt{-70})\), 6.0.432081216000.29, 6.0.144027072000.26, \(\Q(\zeta_{36})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.24.307$x^{12} + 28 x^{11} - 2 x^{10} + 16 x^{9} + 26 x^{8} + 8 x^{7} + 20 x^{6} - 24 x^{5} - 8 x^{4} + 32 x^{3} + 32 x^{2} + 32 x + 24$$4$$3$$24$$C_6\times C_2$$[2, 3]^{3}$
$3$3.12.18.82$x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$$6$$2$$18$$C_6\times C_2$$[2]_{2}^{2}$
$5$5.12.6.1$x^{12} + 500 x^{6} - 3125 x^{2} + 62500$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$7$7.12.6.1$x^{12} + 294 x^{8} + 3430 x^{6} + 21609 x^{4} + 487403 x^{2} + 2941225$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$