Normalized defining polynomial
\( x^{12} - x^{11} + 443 x^{10} - 443 x^{9} + 75583 x^{8} - 75583 x^{7} + 6207007 x^{6} - 6207007 x^{5} + 249420159 x^{4} - 249420159 x^{3} + 4384043743 x^{2} - 4384043743 x + 24466501151 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11849506903407426861218533=13^{11}\cdot 137^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $122.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1781=13\cdot 137\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1781}(1,·)$, $\chi_{1781}(1506,·)$, $\chi_{1781}(549,·)$, $\chi_{1781}(136,·)$, $\chi_{1781}(1643,·)$, $\chi_{1781}(684,·)$, $\chi_{1781}(686,·)$, $\chi_{1781}(1234,·)$, $\chi_{1781}(821,·)$, $\chi_{1781}(823,·)$, $\chi_{1781}(410,·)$, $\chi_{1781}(412,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2595845771} a^{7} - \frac{1057780162}{2595845771} a^{6} + \frac{238}{2595845771} a^{5} - \frac{331954055}{2595845771} a^{4} + \frac{16184}{2595845771} a^{3} + \frac{1241263592}{2595845771} a^{2} + \frac{275128}{2595845771} a + \frac{148762176}{2595845771}$, $\frac{1}{2595845771} a^{8} + \frac{272}{2595845771} a^{6} - \frac{377315286}{2595845771} a^{5} + \frac{23120}{2595845771} a^{4} + \frac{752545655}{2595845771} a^{3} + \frac{628864}{2595845771} a^{2} - \frac{371905440}{2595845771} a + \frac{2672672}{2595845771}$, $\frac{1}{2595845771} a^{9} - \frac{799991803}{2595845771} a^{6} - \frac{41616}{2595845771} a^{5} + \frac{189446630}{2595845771} a^{4} - \frac{3773184}{2595845771} a^{3} - \frac{535652234}{2595845771} a^{2} - \frac{72162144}{2595845771} a + \frac{1070220464}{2595845771}$, $\frac{1}{2595845771} a^{10} - \frac{52020}{2595845771} a^{6} + \frac{1090754461}{2595845771} a^{5} - \frac{5895600}{2595845771} a^{4} + \frac{1048827541}{2595845771} a^{3} - \frac{180405360}{2595845771} a^{2} - \frac{547926842}{2595845771} a - \frac{817837632}{2595845771}$, $\frac{1}{2595845771} a^{11} - \frac{490464892}{2595845771} a^{6} + \frac{6485160}{2595845771} a^{5} + \frac{364955133}{2595845771} a^{4} + \frac{661486320}{2595845771} a^{3} + \frac{916421144}{2595845771} a^{2} + \frac{515092073}{2595845771} a + \frac{392152169}{2595845771}$
Class group and class number
$C_{100402}$, which has order $100402$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.784031363 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.169.1, 4.0.41235493.1, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.12.11.1 | $x^{12} - 13$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
| $137$ | 137.12.6.2 | $x^{12} - 48261724457 x^{2} + 191743831267661$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |