Normalized defining polynomial
\( x^{12} + 804 x^{10} + 242406 x^{8} + 33685456 x^{6} + 2115867705 x^{4} + 48604503852 x^{2} + 348339581209 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11848149020404956572813211180466176=2^{24}\cdot 3^{18}\cdot 67^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $690.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4824=2^{3}\cdot 3^{2}\cdot 67\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4824}(2977,·)$, $\chi_{4824}(4259,·)$, $\chi_{4824}(3589,·)$, $\chi_{4824}(1,·)$, $\chi_{4824}(841,·)$, $\chi_{4824}(2411,·)$, $\chi_{4824}(3887,·)$, $\chi_{4824}(1571,·)$, $\chi_{4824}(3349,·)$, $\chi_{4824}(3119,·)$, $\chi_{4824}(4117,·)$, $\chi_{4824}(3647,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{67067} a^{6} + \frac{6}{1001} a^{4} - \frac{398}{1001} a^{2} - \frac{31}{1001}$, $\frac{1}{590793203} a^{7} - \frac{88082}{8817809} a^{5} - \frac{3055450}{8817809} a^{3} - \frac{1936966}{8817809} a$, $\frac{1}{590793203} a^{8} + \frac{8}{8817809} a^{6} - \frac{416358}{1259687} a^{4} + \frac{3410097}{8817809} a^{2} + \frac{251}{1001}$, $\frac{1}{590793203} a^{9} + \frac{208401}{8817809} a^{5} + \frac{78371}{678293} a^{3} - \frac{76627}{8817809} a$, $\frac{1}{590793203} a^{10} + \frac{86}{84399029} a^{6} - \frac{3394486}{8817809} a^{4} + \frac{240739}{1259687} a^{2} + \frac{86}{1001}$, $\frac{1}{590793203} a^{11} - \frac{297816}{801619} a^{5} - \frac{1048}{4979} a^{3} + \frac{2860318}{8817809} a$
Class group and class number
$C_{30}\times C_{469560}$, which has order $14086800$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1581818.8105486752 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-402}) \), \(\Q(\sqrt{-134}) \), 3.3.363609.1, \(\Q(\sqrt{3}, \sqrt{-134})\), 6.6.25384608937152.1, 6.0.13606150390313472.2, 6.0.4535383463437824.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.24.307 | $x^{12} + 28 x^{11} - 2 x^{10} + 16 x^{9} + 26 x^{8} + 8 x^{7} + 20 x^{6} - 24 x^{5} - 8 x^{4} + 32 x^{3} + 32 x^{2} + 32 x + 24$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ |
| $3$ | 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $67$ | 67.12.10.2 | $x^{12} + 1541 x^{6} + 646416$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |