Properties

Label 12.0.1175078824045389.1
Degree $12$
Signature $[0, 6]$
Discriminant $3^{4}\cdot 29^{9}$
Root discriminant $18.02$
Ramified primes $3, 29$
Class number $2$
Class group $[2]$
Galois group $S_3 \times C_4$ (as 12T11)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![83, 228, 230, 91, -20, -25, 22, 17, -3, 3, 0, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 + 3*x^9 - 3*x^8 + 17*x^7 + 22*x^6 - 25*x^5 - 20*x^4 + 91*x^3 + 230*x^2 + 228*x + 83)
 
gp: K = bnfinit(x^12 - 2*x^11 + 3*x^9 - 3*x^8 + 17*x^7 + 22*x^6 - 25*x^5 - 20*x^4 + 91*x^3 + 230*x^2 + 228*x + 83, 1)
 

Normalized defining polynomial

\( x^{12} - 2 x^{11} + 3 x^{9} - 3 x^{8} + 17 x^{7} + 22 x^{6} - 25 x^{5} - 20 x^{4} + 91 x^{3} + 230 x^{2} + 228 x + 83 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1175078824045389=3^{4}\cdot 29^{9}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $18.02$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{25} a^{10} - \frac{1}{25} a^{8} + \frac{1}{25} a^{7} - \frac{9}{25} a^{5} + \frac{4}{25} a^{4} - \frac{8}{25} a^{3} + \frac{2}{5} a^{2} - \frac{6}{25} a + \frac{8}{25}$, $\frac{1}{233125} a^{11} + \frac{784}{233125} a^{10} + \frac{10099}{233125} a^{9} + \frac{11567}{233125} a^{8} - \frac{216}{233125} a^{7} + \frac{109991}{233125} a^{6} + \frac{103448}{233125} a^{5} - \frac{97147}{233125} a^{4} + \frac{107438}{233125} a^{3} - \frac{84766}{233125} a^{2} + \frac{94529}{233125} a + \frac{26397}{233125}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 142.483768915 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4\times S_3$ (as 12T11):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 24
The 12 conjugacy class representatives for $S_3 \times C_4$
Character table for $S_3 \times C_4$

Intermediate fields

\(\Q(\sqrt{29}) \), 3.1.87.1, 4.0.24389.1, 6.2.219501.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 12 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }$ R ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/11.12.0.1}{12} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/17.12.0.1}{12} }$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/47.12.0.1}{12} }$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$29$29.4.3.2$x^{4} - 116$$4$$1$$3$$C_4$$[\ ]_{4}$
29.8.6.1$x^{8} - 203 x^{4} + 68121$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.3_29.2t1.1c1$1$ $ 3 \cdot 29 $ $x^{2} - x + 22$ $C_2$ (as 2T1) $1$ $-1$
* 1.29.2t1.1c1$1$ $ 29 $ $x^{2} - x - 7$ $C_2$ (as 2T1) $1$ $1$
1.3.2t1.1c1$1$ $ 3 $ $x^{2} - x + 1$ $C_2$ (as 2T1) $1$ $-1$
* 1.29.4t1.1c1$1$ $ 29 $ $x^{4} - x^{3} + 4 x^{2} - 20 x + 23$ $C_4$ (as 4T1) $0$ $-1$
1.3_29.4t1.1c1$1$ $ 3 \cdot 29 $ $x^{4} - x^{3} - 25 x^{2} + 67 x - 35$ $C_4$ (as 4T1) $0$ $1$
* 1.29.4t1.1c2$1$ $ 29 $ $x^{4} - x^{3} + 4 x^{2} - 20 x + 23$ $C_4$ (as 4T1) $0$ $-1$
1.3_29.4t1.1c2$1$ $ 3 \cdot 29 $ $x^{4} - x^{3} - 25 x^{2} + 67 x - 35$ $C_4$ (as 4T1) $0$ $1$
* 2.3_29.3t2.1c1$2$ $ 3 \cdot 29 $ $x^{3} - x^{2} + 2 x + 1$ $S_3$ (as 3T2) $1$ $0$
* 2.3_29.6t3.1c1$2$ $ 3 \cdot 29 $ $x^{6} - x^{5} + 4 x^{4} - 4 x^{3} + 5 x^{2} - 3 x + 1$ $D_{6}$ (as 6T3) $1$ $0$
* 2.3_29e2.12t11.2c1$2$ $ 3 \cdot 29^{2}$ $x^{12} - 2 x^{11} + 3 x^{9} - 3 x^{8} + 17 x^{7} + 22 x^{6} - 25 x^{5} - 20 x^{4} + 91 x^{3} + 230 x^{2} + 228 x + 83$ $S_3 \times C_4$ (as 12T11) $0$ $0$
* 2.3_29e2.12t11.2c2$2$ $ 3 \cdot 29^{2}$ $x^{12} - 2 x^{11} + 3 x^{9} - 3 x^{8} + 17 x^{7} + 22 x^{6} - 25 x^{5} - 20 x^{4} + 91 x^{3} + 230 x^{2} + 228 x + 83$ $S_3 \times C_4$ (as 12T11) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.