Normalized defining polynomial
\( x^{12} + 24 x^{10} - 2 x^{9} + 216 x^{8} - 36 x^{7} + 2484 x^{6} - 216 x^{5} + 20736 x^{4} + 29864 x^{3} + 58320 x^{2} + 181776 x + 145232 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(116861165018676718848=2^{8}\cdot 3^{16}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{108} a^{6} + \frac{1}{9} a^{4} + \frac{1}{3} a^{2} - \frac{7}{27}$, $\frac{1}{108} a^{7} + \frac{1}{9} a^{5} - \frac{1}{6} a^{3} - \frac{7}{27} a$, $\frac{1}{108} a^{8} - \frac{7}{27} a^{2} + \frac{1}{9}$, $\frac{1}{169128} a^{9} + \frac{1}{9396} a^{7} + \frac{337}{84564} a^{6} + \frac{1}{1566} a^{5} + \frac{337}{7047} a^{4} + \frac{4330}{21141} a^{3} + \frac{337}{2349} a^{2} + \frac{1559}{7047} a - \frac{167}{729}$, $\frac{1}{169128} a^{10} + \frac{1}{9396} a^{8} + \frac{337}{84564} a^{7} + \frac{1}{1566} a^{6} + \frac{337}{7047} a^{5} + \frac{4330}{21141} a^{4} + \frac{337}{2349} a^{3} + \frac{1559}{7047} a^{2} - \frac{167}{729} a$, $\frac{1}{230183208} a^{11} + \frac{157}{76727736} a^{10} + \frac{11}{115091604} a^{9} - \frac{34091}{28772901} a^{8} - \frac{50939}{38363868} a^{7} - \frac{23222}{28772901} a^{6} + \frac{581572}{28772901} a^{5} + \frac{1418189}{9590967} a^{4} - \frac{10720771}{57545802} a^{3} + \frac{12463541}{28772901} a^{2} + \frac{459274}{9590967} a - \frac{413309}{992169}$
Class group and class number
$C_{3}\times C_{6}\times C_{6}$, which has order $108$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3416.07942432 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $C_3 : C_4$ |
| Character table for $C_3 : C_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.4212.1 x3, 4.0.2197.1, 6.6.230632272.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ |
| $3$ | 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| $13$ | 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |