Normalized defining polynomial
\( x^{12} + 1191 x^{10} + 403749 x^{8} + 39960432 x^{6} + 826306272 x^{4} + 493931520 x^{2} + 74089728 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(115287720075026486867753102672842752=2^{12}\cdot 3^{6}\cdot 397^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $835.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4764=2^{2}\cdot 3\cdot 397\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4764}(1,·)$, $\chi_{4764}(3239,·)$, $\chi_{4764}(4127,·)$, $\chi_{4764}(1225,·)$, $\chi_{4764}(971,·)$, $\chi_{4764}(793,·)$, $\chi_{4764}(4333,·)$, $\chi_{4764}(2999,·)$, $\chi_{4764}(4729,·)$, $\chi_{4764}(731,·)$, $\chi_{4764}(829,·)$, $\chi_{4764}(4607,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{18} a^{5} - \frac{1}{6} a^{3} - \frac{1}{2} a$, $\frac{1}{432} a^{6} - \frac{7}{144} a^{4} - \frac{7}{48} a^{2} - \frac{1}{4}$, $\frac{1}{864} a^{7} - \frac{7}{288} a^{5} - \frac{7}{96} a^{3} + \frac{3}{8} a$, $\frac{1}{124416} a^{8} + \frac{5}{41472} a^{6} - \frac{35}{1536} a^{4} + \frac{17}{192} a^{2} + \frac{1}{96}$, $\frac{1}{248832} a^{9} + \frac{5}{82944} a^{7} - \frac{35}{3072} a^{5} - \frac{47}{384} a^{3} + \frac{1}{192} a$, $\frac{1}{7844570457071616} a^{10} - \frac{12392807}{10501433008128} a^{8} + \frac{55372841153}{871618939674624} a^{6} + \frac{1072585132343}{24211637213184} a^{4} - \frac{239058468461}{6052909303296} a^{2} - \frac{77602350221}{504409108608}$, $\frac{1}{15689140914143232} a^{11} - \frac{12392807}{21002866016256} a^{9} + \frac{55372841153}{1743237879349248} a^{7} + \frac{1072585132343}{48423274426368} a^{5} - \frac{239058468461}{12105818606592} a^{3} - \frac{77602350221}{1008818217216} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{11908}$, which has order $12193792$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 406436.74206624634 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{397}) \), 3.3.157609.1, 4.0.9010191312.1, 6.6.9861716961757.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 397 | Data not computed | ||||||