Normalized defining polynomial
\( x^{12} - 3x^{11} + 4x^{10} - 3x^{7} - x^{6} + 3x^{5} + 4x^{2} + 3x + 1 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(1148916015625\) \(\medspace = 5^{10}\cdot 7^{6}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(10.12\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{5/6}7^{1/2}\approx 10.116354127720633$ | ||
Ramified primes: | \(5\), \(7\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3}a^{6}-\frac{1}{3}a^{4}+\frac{1}{3}a^{2}-\frac{1}{3}$, $\frac{1}{3}a^{7}-\frac{1}{3}a^{5}+\frac{1}{3}a^{3}-\frac{1}{3}a$, $\frac{1}{3}a^{8}-\frac{1}{3}$, $\frac{1}{3}a^{9}-\frac{1}{3}a$, $\frac{1}{3}a^{10}-\frac{1}{3}a^{2}$, $\frac{1}{39}a^{11}+\frac{5}{39}a^{10}+\frac{5}{39}a^{9}+\frac{1}{39}a^{8}-\frac{5}{39}a^{7}-\frac{4}{39}a^{6}-\frac{7}{39}a^{5}-\frac{14}{39}a^{4}+\frac{6}{13}a^{3}-\frac{4}{13}a^{2}+\frac{4}{13}a-\frac{6}{13}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $3$ |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{31}{39}a^{11}-\frac{35}{13}a^{10}+\frac{155}{39}a^{9}-\frac{34}{39}a^{8}-\frac{25}{39}a^{7}-\frac{24}{13}a^{6}-\frac{35}{39}a^{5}+\frac{46}{13}a^{4}-\frac{53}{39}a^{3}+\frac{6}{13}a^{2}+\frac{125}{39}a+\frac{40}{39}$, $\frac{47}{39}a^{11}-\frac{56}{13}a^{10}+\frac{274}{39}a^{9}-\frac{122}{39}a^{8}+\frac{4}{13}a^{7}-\frac{41}{13}a^{6}+\frac{3}{13}a^{5}+\frac{58}{13}a^{4}-\frac{116}{39}a^{3}+\frac{7}{13}a^{2}+\frac{200}{39}a+\frac{38}{39}$, $\frac{8}{39}a^{11}-\frac{4}{13}a^{10}-\frac{4}{13}a^{9}+\frac{73}{39}a^{8}-\frac{40}{39}a^{7}-\frac{2}{13}a^{6}-\frac{56}{39}a^{5}+\frac{6}{13}a^{4}+\frac{22}{13}a^{3}-\frac{6}{13}a^{2}+\frac{70}{39}a+\frac{38}{39}$, $\frac{17}{39}a^{11}-\frac{71}{39}a^{10}+\frac{137}{39}a^{9}-\frac{113}{39}a^{8}+\frac{58}{39}a^{7}-\frac{27}{13}a^{6}+\frac{50}{39}a^{5}+\frac{16}{13}a^{4}-\frac{19}{39}a^{3}+\frac{17}{39}a^{2}+\frac{16}{13}a-\frac{7}{39}$, $a$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 10.1473323044 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 10.1473323044 \cdot 1}{2\cdot\sqrt{1148916015625}}\cr\approx \mathstrut & 0.291243978891 \end{aligned}\]
Galois group
A solvable group of order 12 |
The 6 conjugacy class representatives for $D_6$ |
Character table for $D_6$ |
Intermediate fields
\(\Q(\sqrt{-7}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-35}) \), 3.1.175.1 x3, \(\Q(\sqrt{5}, \sqrt{-7})\), 6.0.214375.1, 6.2.153125.1 x3, 6.0.1071875.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 6 siblings: | 6.2.153125.1, 6.0.1071875.1 |
Minimal sibling: | 6.2.153125.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.6.0.1}{6} }^{2}$ | ${\href{/padicField/3.2.0.1}{2} }^{6}$ | R | R | ${\href{/padicField/11.3.0.1}{3} }^{4}$ | ${\href{/padicField/13.2.0.1}{2} }^{6}$ | ${\href{/padicField/17.2.0.1}{2} }^{6}$ | ${\href{/padicField/19.2.0.1}{2} }^{6}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}$ | ${\href{/padicField/29.3.0.1}{3} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{6}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.2.0.1}{2} }^{6}$ | ${\href{/padicField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.12.10.1 | $x^{12} + 20 x^{7} + 10 x^{6} + 50 x^{2} + 100 x + 25$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ |
\(7\) | 7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |