Normalized defining polynomial
\( x^{12} - 3 x^{11} + 2 x^{10} + 21 x^{9} - 32 x^{8} - 45 x^{7} + 351 x^{6} - 584 x^{5} + 648 x^{4} + \cdots + 1208 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(1123021498208518144\) \(\medspace = 2^{15}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(31.93\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}17^{11/12}\approx 37.971390815226314$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{3}$, $\frac{1}{12}a^{10}-\frac{1}{12}a^{9}-\frac{1}{6}a^{8}+\frac{1}{12}a^{7}-\frac{1}{6}a^{6}+\frac{1}{4}a^{5}+\frac{1}{12}a^{4}-\frac{1}{2}a^{3}-\frac{1}{6}a^{2}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{160295908524}a^{11}-\frac{16634249}{1083080463}a^{10}+\frac{10781415239}{160295908524}a^{9}+\frac{1680080543}{53431969508}a^{8}-\frac{5444174631}{53431969508}a^{7}-\frac{29822817709}{160295908524}a^{6}+\frac{1301309506}{40073977131}a^{5}+\frac{15363965525}{160295908524}a^{4}+\frac{28672591355}{80147954262}a^{3}-\frac{3988348981}{26715984754}a^{2}+\frac{555086093}{13357992377}a+\frac{18242400485}{40073977131}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{108959495}{26715984754}a^{11}-\frac{17527159}{2166160926}a^{10}-\frac{518770625}{80147954262}a^{9}+\frac{6738157043}{80147954262}a^{8}-\frac{3480780817}{80147954262}a^{7}-\frac{11909933993}{40073977131}a^{6}+\frac{13777423083}{13357992377}a^{5}-\frac{92251577461}{80147954262}a^{4}+\frac{7136166649}{13357992377}a^{3}+\frac{10912165349}{80147954262}a^{2}+\frac{5373712081}{40073977131}a-\frac{10229312285}{40073977131}$, $\frac{931885111}{160295908524}a^{11}-\frac{10321652}{1083080463}a^{10}-\frac{2443027225}{160295908524}a^{9}+\frac{5862790997}{53431969508}a^{8}+\frac{471322181}{53431969508}a^{7}-\frac{78621668251}{160295908524}a^{6}+\frac{91447143767}{80147954262}a^{5}-\frac{138985426321}{160295908524}a^{4}+\frac{48508629719}{80147954262}a^{3}-\frac{36595874349}{26715984754}a^{2}+\frac{32413789968}{13357992377}a-\frac{71034213724}{40073977131}$, $\frac{166336741}{13357992377}a^{11}-\frac{10532677}{722053642}a^{10}-\frac{329281641}{13357992377}a^{9}+\frac{3232855133}{13357992377}a^{8}+\frac{1236364847}{13357992377}a^{7}-\frac{22335980243}{26715984754}a^{6}+\frac{35455890938}{13357992377}a^{5}-\frac{11470532996}{13357992377}a^{4}+\frac{19702030004}{13357992377}a^{3}-\frac{15724411423}{26715984754}a^{2}+\frac{110339825842}{13357992377}a+\frac{443707080}{13357992377}$, $\frac{73529557}{26715984754}a^{11}-\frac{9630785}{722053642}a^{10}+\frac{304567485}{26715984754}a^{9}+\frac{2195319215}{26715984754}a^{8}-\frac{5182576203}{26715984754}a^{7}-\frac{3285109730}{13357992377}a^{6}+\frac{19020836514}{13357992377}a^{5}-\frac{60506826353}{26715984754}a^{4}+\frac{20158124210}{13357992377}a^{3}-\frac{39404596981}{26715984754}a^{2}+\frac{27458967410}{13357992377}a-\frac{30576988304}{13357992377}$, $\frac{443797475}{26715984754}a^{11}-\frac{97982675}{4332321852}a^{10}-\frac{10086930631}{160295908524}a^{9}+\frac{13561533844}{40073977131}a^{8}+\frac{34727804185}{160295908524}a^{7}-\frac{65095442036}{40073977131}a^{6}+\frac{147683385327}{53431969508}a^{5}+\frac{56220458263}{160295908524}a^{4}-\frac{138310391}{13357992377}a^{3}-\frac{265751417803}{80147954262}a^{2}+\frac{342515153620}{40073977131}a-\frac{39070763468}{40073977131}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 9164.81984036 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 9164.81984036 \cdot 2}{2\cdot\sqrt{1123021498208518144}}\cr\approx \mathstrut & 0.532119417777 \end{aligned}\]
Galois group
$S_3^2:C_4$ (as 12T80):
A solvable group of order 144 |
The 18 conjugacy class representatives for $S_3^2:C_4$ |
Character table for $S_3^2:C_4$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 4.0.39304.1, 6.2.11358856.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.4.2193401363688512.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.4.0.1}{4} }^{2}{,}\,{\href{/padicField/3.2.0.1}{2} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{5}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.2.0.1}{2} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }^{6}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.0.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
2.4.6.1 | $x^{4} + 2 x^{3} + 31 x^{2} + 30 x + 183$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
2.6.9.3 | $x^{6} + 12 x^{5} + 86 x^{4} + 352 x^{3} + 892 x^{2} + 1552 x + 1384$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |