Normalized defining polynomial
\( x^{12} - 5 x^{11} + 15 x^{10} - 18 x^{9} + 19 x^{8} - 7 x^{7} + 6 x^{6} - 7 x^{5} + 19 x^{4} - 18 x^{3} + \cdots + 1 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(1123021498208518144\) \(\medspace = 2^{15}\cdot 17^{11}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(31.93\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{13/6}17^{11/12}\approx 60.275825724785875$ | ||
Ramified primes: | \(2\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{34}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{10}a^{10}-\frac{1}{10}a^{9}+\frac{3}{10}a^{7}+\frac{1}{10}a^{6}+\frac{2}{5}a^{5}+\frac{1}{10}a^{4}+\frac{3}{10}a^{3}-\frac{1}{10}a+\frac{1}{10}$, $\frac{1}{20}a^{11}-\frac{1}{20}a^{9}-\frac{7}{20}a^{8}+\frac{1}{5}a^{7}+\frac{1}{4}a^{6}-\frac{1}{4}a^{5}+\frac{1}{5}a^{4}+\frac{3}{20}a^{3}+\frac{9}{20}a^{2}-\frac{9}{20}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{6}$, which has order $6$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a^{11}-5a^{10}+15a^{9}-18a^{8}+19a^{7}-7a^{6}+6a^{5}-7a^{4}+19a^{3}-18a^{2}+15a-5$, $\frac{12}{5}a^{11}-\frac{72}{5}a^{10}+45a^{9}-\frac{314}{5}a^{8}+\frac{202}{5}a^{7}-\frac{27}{5}a^{6}-\frac{3}{5}a^{5}-\frac{159}{5}a^{4}+59a^{3}-\frac{267}{5}a^{2}+\frac{107}{5}a-4$, $\frac{3}{5}a^{11}-\frac{18}{5}a^{10}+11a^{9}-\frac{71}{5}a^{8}+\frac{28}{5}a^{7}+\frac{22}{5}a^{6}-\frac{12}{5}a^{5}-\frac{41}{5}a^{4}+15a^{3}-\frac{48}{5}a^{2}+\frac{3}{5}a+1$, $\frac{2}{5}a^{11}-\frac{22}{5}a^{10}+16a^{9}-\frac{164}{5}a^{8}+\frac{102}{5}a^{7}-\frac{72}{5}a^{6}-\frac{18}{5}a^{5}-\frac{84}{5}a^{4}+20a^{3}-\frac{162}{5}a^{2}+\frac{62}{5}a-11$, $\frac{7}{5}a^{11}-\frac{52}{5}a^{10}+35a^{9}-\frac{294}{5}a^{8}+\frac{177}{5}a^{7}-\frac{37}{5}a^{6}-\frac{18}{5}a^{5}-\frac{129}{5}a^{4}+49a^{3}-\frac{257}{5}a^{2}+\frac{92}{5}a-4$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 7531.86927297 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 7531.86927297 \cdot 6}{2\cdot\sqrt{1123021498208518144}}\cr\approx \mathstrut & 1.31192559007 \end{aligned}\]
Galois group
$D_6\wr C_2$ (as 12T125):
A solvable group of order 288 |
The 27 conjugacy class representatives for $D_6\wr C_2$ |
Character table for $D_6\wr C_2$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 4.0.39304.1, 6.4.45435424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.2.561510749104259072.4 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ | ${\href{/padicField/7.4.0.1}{4} }^{3}$ | ${\href{/padicField/11.6.0.1}{6} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/19.2.0.1}{2} }^{5}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{8}$ | ${\href{/padicField/53.2.0.1}{2} }^{5}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.2.3.2 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
2.4.8.1 | $x^{4} + 2 x^{2} + 4 x + 10$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
2.6.4.1 | $x^{6} + 3 x^{5} + 10 x^{4} + 19 x^{3} + 22 x^{2} + 11 x + 7$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
\(17\) | 17.12.11.2 | $x^{12} + 34$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ |