Properties

Label 12.0.11177126654841.1
Degree $12$
Signature $[0, 6]$
Discriminant $1.118\times 10^{13}$
Root discriminant \(12.23\)
Ramified primes $3,7,19$
Class number $1$
Class group trivial
Galois group $C_6\times S_3$ (as 12T18)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - x^11 + 8*x^10 - x^9 + 23*x^8 + 2*x^7 + 41*x^6 - 14*x^5 + 8*x^4 - 40*x^3 - 48*x^2 + 64)
 
gp: K = bnfinit(y^12 - y^11 + 8*y^10 - y^9 + 23*y^8 + 2*y^7 + 41*y^6 - 14*y^5 + 8*y^4 - 40*y^3 - 48*y^2 + 64, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - x^11 + 8*x^10 - x^9 + 23*x^8 + 2*x^7 + 41*x^6 - 14*x^5 + 8*x^4 - 40*x^3 - 48*x^2 + 64);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - x^11 + 8*x^10 - x^9 + 23*x^8 + 2*x^7 + 41*x^6 - 14*x^5 + 8*x^4 - 40*x^3 - 48*x^2 + 64)
 

\( x^{12} - x^{11} + 8x^{10} - x^{9} + 23x^{8} + 2x^{7} + 41x^{6} - 14x^{5} + 8x^{4} - 40x^{3} - 48x^{2} + 64 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(11177126654841\) \(\medspace = 3^{6}\cdot 7^{6}\cdot 19^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(12.23\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}7^{1/2}19^{2/3}\approx 32.62962239806118$
Ramified primes:   \(3\), \(7\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $6$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{9}-\frac{1}{8}a^{8}-\frac{1}{8}a^{6}-\frac{1}{8}a^{5}+\frac{1}{4}a^{4}+\frac{1}{8}a^{3}+\frac{1}{4}a^{2}$, $\frac{1}{16}a^{10}-\frac{1}{16}a^{9}-\frac{1}{16}a^{7}-\frac{1}{16}a^{6}-\frac{3}{8}a^{5}-\frac{7}{16}a^{4}-\frac{3}{8}a^{3}$, $\frac{1}{66746272}a^{11}+\frac{1791543}{66746272}a^{10}+\frac{8171}{4171642}a^{9}+\frac{6627935}{66746272}a^{8}+\frac{8646591}{66746272}a^{7}+\frac{3217829}{33373136}a^{6}+\frac{13450713}{66746272}a^{5}+\frac{2049077}{33373136}a^{4}+\frac{4507}{8343284}a^{3}-\frac{1810109}{8343284}a^{2}+\frac{1368335}{4171642}a+\frac{155538}{2085821}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{269}{34264} a^{11} + \frac{469}{68528} a^{10} - \frac{4825}{68528} a^{9} - \frac{31}{8566} a^{8} - \frac{18281}{68528} a^{7} - \frac{2521}{68528} a^{6} - \frac{23359}{34264} a^{5} + \frac{171}{68528} a^{4} - \frac{4871}{8566} a^{3} + \frac{4449}{17132} a^{2} - \frac{97}{8566} a + \frac{3620}{4283} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{26821}{8343284}a^{11}-\frac{41787}{4171642}a^{10}+\frac{205155}{8343284}a^{9}-\frac{105433}{2085821}a^{8}+\frac{295147}{8343284}a^{7}-\frac{1333637}{8343284}a^{6}+\frac{29517}{4171642}a^{5}-\frac{501656}{2085821}a^{4}-\frac{190742}{2085821}a^{3}+\frac{3003035}{8343284}a^{2}+\frac{370160}{2085821}a+\frac{2427405}{2085821}$, $\frac{142149}{16686568}a^{11}-\frac{183267}{16686568}a^{10}+\frac{1412375}{16686568}a^{9}-\frac{73035}{2085821}a^{8}+\frac{5038315}{16686568}a^{7}+\frac{30831}{16686568}a^{6}+\frac{5233457}{8343284}a^{5}-\frac{56768}{2085821}a^{4}+\frac{12977073}{16686568}a^{3}-\frac{391502}{2085821}a^{2}-\frac{197729}{4171642}a+\frac{1560069}{2085821}$, $\frac{357201}{16686568}a^{11}-\frac{807345}{33373136}a^{10}+\frac{5424597}{33373136}a^{9}+\frac{35337}{4171642}a^{8}+\frac{14299397}{33373136}a^{7}+\frac{7294581}{33373136}a^{6}+\frac{15408579}{16686568}a^{5}+\frac{6397857}{33373136}a^{4}+\frac{1388011}{4171642}a^{3}-\frac{174717}{8343284}a^{2}-\frac{5475843}{4171642}a-\frac{2567714}{2085821}$, $\frac{1619353}{66746272}a^{11}-\frac{2867369}{66746272}a^{10}+\frac{3397219}{16686568}a^{9}-\frac{9320509}{66746272}a^{8}+\frac{33687711}{66746272}a^{7}-\frac{9492489}{33373136}a^{6}+\frac{66417373}{66746272}a^{5}-\frac{28492459}{33373136}a^{4}+\frac{6530047}{16686568}a^{3}-\frac{1636999}{4171642}a^{2}-\frac{320749}{4171642}a-\frac{302120}{2085821}$, $\frac{1302657}{66746272}a^{11}-\frac{684161}{66746272}a^{10}+\frac{2348957}{16686568}a^{9}+\frac{3625155}{66746272}a^{8}+\frac{25459447}{66746272}a^{7}+\frac{7358707}{33373136}a^{6}+\frac{43178733}{66746272}a^{5}-\frac{5665963}{33373136}a^{4}-\frac{7279495}{16686568}a^{3}-\frac{2966533}{2085821}a^{2}-\frac{5485848}{2085821}a-\frac{3987474}{2085821}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 58.233702693092496 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 58.233702693092496 \cdot 1}{6\cdot\sqrt{11177126654841}}\cr\approx \mathstrut & 0.178622958625082 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - x^11 + 8*x^10 - x^9 + 23*x^8 + 2*x^7 + 41*x^6 - 14*x^5 + 8*x^4 - 40*x^3 - 48*x^2 + 64)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - x^11 + 8*x^10 - x^9 + 23*x^8 + 2*x^7 + 41*x^6 - 14*x^5 + 8*x^4 - 40*x^3 - 48*x^2 + 64, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - x^11 + 8*x^10 - x^9 + 23*x^8 + 2*x^7 + 41*x^6 - 14*x^5 + 8*x^4 - 40*x^3 - 48*x^2 + 64);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - x^11 + 8*x^10 - x^9 + 23*x^8 + 2*x^7 + 41*x^6 - 14*x^5 + 8*x^4 - 40*x^3 - 48*x^2 + 64);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6\times S_3$ (as 12T18):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 18 conjugacy class representatives for $C_6\times S_3$
Character table for $C_6\times S_3$

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-3}, \sqrt{-7})\), 6.0.9747.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 36
Degree 18 siblings: 18.6.1757991877014292604100845541.1, 18.0.65110810259788614966697983.1
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.6.0.1}{6} }^{2}$ R ${\href{/padicField/5.6.0.1}{6} }^{2}$ R ${\href{/padicField/11.2.0.1}{2} }^{6}$ ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{3}$ ${\href{/padicField/17.6.0.1}{6} }^{2}$ R ${\href{/padicField/23.6.0.1}{6} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }^{2}$ ${\href{/padicField/31.6.0.1}{6} }^{2}$ ${\href{/padicField/37.3.0.1}{3} }^{4}$ ${\href{/padicField/41.6.0.1}{6} }^{2}$ ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{6}$ ${\href{/padicField/47.6.0.1}{6} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.12.6.2$x^{12} + 22 x^{10} + 177 x^{8} + 4 x^{7} + 644 x^{6} - 100 x^{5} + 876 x^{4} - 224 x^{3} + 1076 x^{2} + 344 x + 112$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(7\) Copy content Toggle raw display 7.6.3.2$x^{6} + 12 x^{5} + 57 x^{4} + 176 x^{3} + 699 x^{2} + 420 x + 1787$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
7.6.3.2$x^{6} + 12 x^{5} + 57 x^{4} + 176 x^{3} + 699 x^{2} + 420 x + 1787$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
\(19\) Copy content Toggle raw display 19.2.0.1$x^{2} + 18 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} + 18 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} + 18 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.6.4.3$x^{6} + 54 x^{5} + 1168 x^{4} + 12926 x^{3} + 104347 x^{2} + 738556 x + 220465$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.21.2t1.a.a$1$ $ 3 \cdot 7 $ \(\Q(\sqrt{21}) \) $C_2$ (as 2T1) $1$ $1$
* 1.3.2t1.a.a$1$ $ 3 $ \(\Q(\sqrt{-3}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.7.2t1.a.a$1$ $ 7 $ \(\Q(\sqrt{-7}) \) $C_2$ (as 2T1) $1$ $-1$
1.57.6t1.a.a$1$ $ 3 \cdot 19 $ 6.0.3518667.1 $C_6$ (as 6T1) $0$ $-1$
1.19.3t1.a.a$1$ $ 19 $ 3.3.361.1 $C_3$ (as 3T1) $0$ $1$
1.19.3t1.a.b$1$ $ 19 $ 3.3.361.1 $C_3$ (as 3T1) $0$ $1$
1.133.6t1.j.a$1$ $ 7 \cdot 19 $ 6.0.44700103.1 $C_6$ (as 6T1) $0$ $-1$
1.399.6t1.f.a$1$ $ 3 \cdot 7 \cdot 19 $ 6.6.1206902781.1 $C_6$ (as 6T1) $0$ $1$
1.57.6t1.a.b$1$ $ 3 \cdot 19 $ 6.0.3518667.1 $C_6$ (as 6T1) $0$ $-1$
1.399.6t1.f.b$1$ $ 3 \cdot 7 \cdot 19 $ 6.6.1206902781.1 $C_6$ (as 6T1) $0$ $1$
1.133.6t1.j.b$1$ $ 7 \cdot 19 $ 6.0.44700103.1 $C_6$ (as 6T1) $0$ $-1$
2.1083.3t2.b.a$2$ $ 3 \cdot 19^{2}$ 3.1.1083.1 $S_3$ (as 3T2) $1$ $0$
2.53067.6t3.b.a$2$ $ 3 \cdot 7^{2} \cdot 19^{2}$ 6.2.1206902781.3 $D_{6}$ (as 6T3) $1$ $0$
* 2.57.6t5.a.a$2$ $ 3 \cdot 19 $ 6.0.9747.1 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.2793.12t18.d.a$2$ $ 3 \cdot 7^{2} \cdot 19 $ 12.0.11177126654841.1 $C_6\times S_3$ (as 12T18) $0$ $0$
* 2.57.6t5.a.b$2$ $ 3 \cdot 19 $ 6.0.9747.1 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.2793.12t18.d.b$2$ $ 3 \cdot 7^{2} \cdot 19 $ 12.0.11177126654841.1 $C_6\times S_3$ (as 12T18) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.