Normalized defining polynomial
\( x^{12} - 2 x^{11} + 4 x^{10} + 8 x^{9} - 40 x^{8} + 77 x^{7} - 20 x^{6} - 194 x^{5} + 820 x^{4} - 1368 x^{3} + 1545 x^{2} - 1683 x + 1089 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1094032426497921=3^{6}\cdot 107^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{63} a^{8} - \frac{2}{63} a^{7} - \frac{2}{63} a^{6} + \frac{13}{63} a^{5} - \frac{8}{63} a^{4} - \frac{20}{63} a^{3} + \frac{10}{21} a^{2} - \frac{8}{21} a + \frac{2}{7}$, $\frac{1}{63} a^{9} - \frac{2}{21} a^{7} + \frac{1}{7} a^{6} + \frac{2}{7} a^{5} + \frac{3}{7} a^{4} - \frac{10}{63} a^{3} - \frac{3}{7} a^{2} - \frac{10}{21} a - \frac{3}{7}$, $\frac{1}{63} a^{10} - \frac{1}{21} a^{7} + \frac{2}{21} a^{6} - \frac{1}{3} a^{5} + \frac{5}{63} a^{4} - \frac{1}{3} a^{3} + \frac{8}{21} a^{2} + \frac{2}{7} a - \frac{2}{7}$, $\frac{1}{19998148401} a^{11} + \frac{11900177}{6666049467} a^{10} - \frac{5713874}{2856878343} a^{9} + \frac{1851998}{240941547} a^{8} - \frac{2947879832}{19998148401} a^{7} - \frac{195016198}{1818013491} a^{6} - \frac{1446758074}{6666049467} a^{5} - \frac{386883872}{2856878343} a^{4} + \frac{1918285492}{6666049467} a^{3} + \frac{1039911758}{6666049467} a^{2} - \frac{98667710}{317430927} a - \frac{9734083}{202001499}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3438437}{2856878343} a^{11} + \frac{1500350}{952292781} a^{10} - \frac{13560038}{2856878343} a^{9} - \frac{445048}{34420221} a^{8} + \frac{112006348}{2856878343} a^{7} - \frac{19751011}{259716213} a^{6} - \frac{8645917}{952292781} a^{5} + \frac{538217056}{2856878343} a^{4} - \frac{866366318}{952292781} a^{3} + \frac{1042965824}{952292781} a^{2} - \frac{548817209}{317430927} a + \frac{56490677}{28857357} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1921.32424147 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_6$ |
| Character table for $D_6$ |
Intermediate fields
| \(\Q(\sqrt{321}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-107}) \), 3.3.321.1 x3, \(\Q(\sqrt{-3}, \sqrt{-107})\), 6.6.33076161.2, 6.0.309123.1 x3, 6.0.11025387.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $107$ | 107.4.2.1 | $x^{4} + 963 x^{2} + 286225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 107.4.2.1 | $x^{4} + 963 x^{2} + 286225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 107.4.2.1 | $x^{4} + 963 x^{2} + 286225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |