Normalized defining polynomial
\( x^{12} - 6 x^{11} + 111 x^{10} - 500 x^{9} + 9519 x^{8} - 35142 x^{7} + 504889 x^{6} - 1393704 x^{5} + 19106076 x^{4} - 35929344 x^{3} + 476053380 x^{2} - 458315280 x + 6075013344 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10819730946497133891723300864=2^{12}\cdot 3^{18}\cdot 7^{10}\cdot 17^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $216.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4284=2^{2}\cdot 3^{2}\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4284}(1,·)$, $\chi_{4284}(2651,·)$, $\chi_{4284}(2243,·)$, $\chi_{4284}(1189,·)$, $\chi_{4284}(1633,·)$, $\chi_{4284}(2279,·)$, $\chi_{4284}(985,·)$, $\chi_{4284}(3299,·)$, $\chi_{4284}(2005,·)$, $\chi_{4284}(3095,·)$, $\chi_{4284}(2041,·)$, $\chi_{4284}(4283,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{7} a^{3} + \frac{2}{7} a^{2} - \frac{1}{7} a - \frac{1}{7}$, $\frac{1}{14} a^{4} - \frac{5}{14} a^{2} - \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{14} a^{5} - \frac{1}{14} a^{3} + \frac{1}{7} a^{2} - \frac{1}{7} a - \frac{2}{7}$, $\frac{1}{196} a^{6} - \frac{3}{196} a^{5} - \frac{5}{196} a^{4} - \frac{13}{196} a^{3} - \frac{5}{98} a^{2} - \frac{13}{98} a - \frac{5}{49}$, $\frac{1}{196} a^{7} - \frac{1}{28} a^{3} - \frac{2}{7} a^{2} + \frac{3}{14} a + \frac{20}{49}$, $\frac{1}{784} a^{8} + \frac{1}{56} a^{5} + \frac{3}{112} a^{4} + \frac{1}{56} a^{3} - \frac{1}{8} a^{2} + \frac{12}{49} a + \frac{1}{7}$, $\frac{1}{5488} a^{9} - \frac{1}{5488} a^{8} - \frac{3}{1372} a^{7} - \frac{1}{392} a^{6} + \frac{3}{112} a^{5} + \frac{19}{784} a^{4} + \frac{1}{98} a^{3} + \frac{61}{2744} a^{2} - \frac{131}{343} a + \frac{115}{343}$, $\frac{1}{1320779162416} a^{10} - \frac{5}{1320779162416} a^{9} - \frac{184889245}{330194790604} a^{8} + \frac{1479113975}{660389581208} a^{7} + \frac{68256437}{188682737488} a^{6} - \frac{1683883289}{188682737488} a^{5} - \frac{41061065}{11792671093} a^{4} + \frac{16147124775}{660389581208} a^{3} - \frac{5245925297}{82548697651} a^{2} + \frac{8166263935}{165097395302} a - \frac{18775071586}{82548697651}$, $\frac{1}{133196616192166352} a^{11} + \frac{25209}{66598308096083176} a^{10} - \frac{298945037277}{19028088027452336} a^{9} - \frac{995510137189}{4757022006863084} a^{8} + \frac{274409074061793}{133196616192166352} a^{7} - \frac{8458754600777}{9514044013726168} a^{6} + \frac{45874099696597}{19028088027452336} a^{5} - \frac{195788903423611}{33299154048041588} a^{4} + \frac{3905161957328855}{66598308096083176} a^{3} + \frac{808793109099979}{4757022006863084} a^{2} - \frac{662840162454947}{2378511003431542} a - \frac{558106946725697}{8324788512010397}$
Class group and class number
$C_{2}\times C_{6}\times C_{6}\times C_{24180}$, which has order $1740960$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38984.4787659612 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-357}) \), \(\Q(\sqrt{-119}) \), 3.3.3969.1, \(\Q(\sqrt{3}, \sqrt{-119})\), 6.6.3024568512.1, 6.0.104017935696192.3, 6.0.541760081751.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $3$ | 3.6.9.2 | $x^{6} + 3 x^{4} + 6$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.2 | $x^{6} + 3 x^{4} + 6$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $7$ | 7.12.10.2 | $x^{12} + 35 x^{6} + 441$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $17$ | 17.12.6.1 | $x^{12} + 117912 x^{6} - 1419857 x^{2} + 3475809936$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |