Normalized defining polynomial
\( x^{12} - x^{11} + 92 x^{10} - 92 x^{9} + 3277 x^{8} - 3277 x^{7} + 56785 x^{6} - 56785 x^{5} + 493767 x^{4} - 493767 x^{3} + 2023204 x^{2} - 2023204 x + 3552641 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1066018797345756936877=13^{11}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(377=13\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{377}(1,·)$, $\chi_{377}(233,·)$, $\chi_{377}(202,·)$, $\chi_{377}(204,·)$, $\chi_{377}(146,·)$, $\chi_{377}(115,·)$, $\chi_{377}(30,·)$, $\chi_{377}(86,·)$, $\chi_{377}(88,·)$, $\chi_{377}(57,·)$, $\chi_{377}(28,·)$, $\chi_{377}(318,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{669761} a^{7} + \frac{64689}{669761} a^{6} + \frac{49}{669761} a^{5} + \frac{37894}{669761} a^{4} + \frac{686}{669761} a^{3} - \frac{271874}{669761} a^{2} + \frac{2401}{669761} a + \frac{172428}{669761}$, $\frac{1}{669761} a^{8} + \frac{56}{669761} a^{6} + \frac{216938}{669761} a^{5} + \frac{980}{669761} a^{4} + \frac{225459}{669761} a^{3} + \frac{5488}{669761} a^{2} + \frac{238691}{669761} a + \frac{4802}{669761}$, $\frac{1}{669761} a^{9} - \frac{56841}{669761} a^{6} - \frac{1764}{669761} a^{5} + \frac{2126}{12637} a^{4} - \frac{32928}{669761} a^{3} + \frac{59132}{669761} a^{2} - \frac{129654}{669761} a - \frac{279314}{669761}$, $\frac{1}{669761} a^{10} - \frac{2205}{669761} a^{6} + \frac{218843}{669761} a^{5} - \frac{51450}{669761} a^{4} + \frac{205920}{669761} a^{3} - \frac{324135}{669761} a^{2} + \frac{234444}{669761} a - \frac{302526}{669761}$, $\frac{1}{669761} a^{11} + \frac{198995}{669761} a^{6} + \frac{56595}{669761} a^{5} + \frac{42065}{669761} a^{4} - \frac{151027}{669761} a^{3} + \frac{188369}{669761} a^{2} + \frac{303352}{669761} a - \frac{220508}{669761}$
Class group and class number
$C_{2}\times C_{628}$, which has order $1256$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.784031363 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.169.1, 4.0.1847677.1, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
| $29$ | 29.6.3.1 | $x^{6} - 58 x^{4} + 841 x^{2} - 219501$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 29.6.3.1 | $x^{6} - 58 x^{4} + 841 x^{2} - 219501$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |