Normalized defining polynomial
\( x^{12} - 16 x^{10} + 133 x^{8} - 664 x^{6} + 2106 x^{4} - 3380 x^{2} + 2197 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1052745423388672=2^{24}\cdot 13^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{13} a^{8} - \frac{3}{13} a^{6} + \frac{3}{13} a^{4} - \frac{1}{13} a^{2}$, $\frac{1}{13} a^{9} - \frac{3}{13} a^{7} + \frac{3}{13} a^{5} - \frac{1}{13} a^{3}$, $\frac{1}{6028399} a^{10} + \frac{75254}{6028399} a^{8} - \frac{2326347}{6028399} a^{6} + \frac{2766399}{6028399} a^{4} - \frac{5771}{463723} a^{2} + \frac{9617}{35671}$, $\frac{1}{6028399} a^{11} + \frac{75254}{6028399} a^{9} - \frac{2326347}{6028399} a^{7} + \frac{2766399}{6028399} a^{5} - \frac{5771}{463723} a^{3} + \frac{9617}{35671} a$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{109}{35671} a^{10} + \frac{1644}{35671} a^{8} - \frac{13316}{35671} a^{6} + \frac{60814}{35671} a^{4} - \frac{169507}{35671} a^{2} + \frac{165784}{35671} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 440.470798883 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_3:D_4$ (as 12T42):
| A solvable group of order 72 |
| The 27 conjugacy class representatives for $C_3\times C_3:D_4$ |
| Character table for $C_3\times C_3:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.0.3328.1, 6.0.10816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.24.78 | $x^{12} - 4 x^{11} + 10 x^{10} - 6 x^{8} - 8 x^{7} + 12 x^{6} + 8 x^{5} + 8 x^{4} + 16 x^{2} + 8$ | $4$ | $3$ | $24$ | $D_4 \times C_3$ | $[2, 3]^{6}$ |
| $13$ | 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |