Normalized defining polynomial
\( x^{12} + 189 x^{10} + 15972 x^{8} + 773671 x^{6} + 22405545 x^{4} + 361326234 x^{2} + 2491307569 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10492184911088211262672896=2^{12}\cdot 3^{18}\cdot 137^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $121.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4932=2^{2}\cdot 3^{2}\cdot 137\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4932}(2465,·)$, $\chi_{4932}(547,·)$, $\chi_{4932}(1,·)$, $\chi_{4932}(3563,·)$, $\chi_{4932}(4109,·)$, $\chi_{4932}(2191,·)$, $\chi_{4932}(1919,·)$, $\chi_{4932}(275,·)$, $\chi_{4932}(821,·)$, $\chi_{4932}(3289,·)$, $\chi_{4932}(3835,·)$, $\chi_{4932}(1645,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{19} a^{9} + \frac{7}{19} a^{7} - \frac{8}{19} a^{5} + \frac{3}{19} a^{3} + \frac{9}{19} a$, $\frac{1}{8352956312191} a^{10} + \frac{767521970142}{8352956312191} a^{8} + \frac{3025671332088}{8352956312191} a^{6} - \frac{1629466338595}{8352956312191} a^{4} + \frac{3131284356608}{8352956312191} a^{2} + \frac{43867932021}{439629279589}$, $\frac{1}{21943216232125757} a^{11} + \frac{346755765006685}{21943216232125757} a^{9} + \frac{6634833353932153}{21943216232125757} a^{7} - \frac{255295560661448}{21943216232125757} a^{5} - \frac{5799975206218192}{21943216232125757} a^{3} - \frac{10843062319633875}{21943216232125757} a$
Class group and class number
$C_{3}\times C_{68328}$, which has order $204984$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 325.67540279491664 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-137}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-411}) \), \(\Q(\zeta_{9})^+\), \(\Q(\sqrt{3}, \sqrt{-137})\), 6.0.1079721410112.8, \(\Q(\zeta_{36})^+\), 6.0.50611941099.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| $3$ | 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $137$ | 137.12.6.1 | $x^{12} + 149138474 x^{6} - 48261724457 x^{2} + 5560571106762169$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |