Normalized defining polynomial
\( x^{12} - 4 x^{11} + 202 x^{10} - 656 x^{9} + 17604 x^{8} - 45212 x^{7} + 847622 x^{6} - 1633236 x^{5} + 23739599 x^{4} - 30808716 x^{3} + 365351184 x^{2} - 241593532 x + 2404591561 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10437554603200547490103296=2^{24}\cdot 3^{6}\cdot 7^{8}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $121.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3864=2^{3}\cdot 3\cdot 7\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3864}(1,·)$, $\chi_{3864}(3035,·)$, $\chi_{3864}(1381,·)$, $\chi_{3864}(2209,·)$, $\chi_{3864}(2759,·)$, $\chi_{3864}(1933,·)$, $\chi_{3864}(1103,·)$, $\chi_{3864}(3313,·)$, $\chi_{3864}(275,·)$, $\chi_{3864}(277,·)$, $\chi_{3864}(827,·)$, $\chi_{3864}(2207,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{35} a^{9} - \frac{3}{35} a^{8} - \frac{9}{35} a^{7} - \frac{1}{5} a^{6} + \frac{12}{35} a^{5} + \frac{3}{7} a^{4} + \frac{3}{35} a^{3} - \frac{2}{7} a^{2} - \frac{2}{7} a + \frac{1}{35}$, $\frac{1}{710867255} a^{10} - \frac{820142}{710867255} a^{9} + \frac{104013118}{710867255} a^{8} - \frac{19153271}{710867255} a^{7} + \frac{14565419}{142173451} a^{6} + \frac{332150067}{710867255} a^{5} + \frac{228328133}{710867255} a^{4} - \frac{100775987}{710867255} a^{3} - \frac{55256235}{142173451} a^{2} - \frac{313839069}{710867255} a - \frac{223063594}{710867255}$, $\frac{1}{132091472370054137255} a^{11} - \frac{81649434569}{132091472370054137255} a^{10} - \frac{407309875483016344}{132091472370054137255} a^{9} + \frac{3268922730165606981}{132091472370054137255} a^{8} + \frac{26340521032858964966}{132091472370054137255} a^{7} - \frac{772630409895961406}{132091472370054137255} a^{6} + \frac{29317745496973696557}{132091472370054137255} a^{5} + \frac{3442115526115080761}{18870210338579162465} a^{4} - \frac{54927752975841367294}{132091472370054137255} a^{3} - \frac{42550968470139047479}{132091472370054137255} a^{2} - \frac{398305602975312146}{1860443272817663905} a - \frac{33523828610401638933}{132091472370054137255}$
Class group and class number
$C_{2}\times C_{12}\times C_{4836}$, which has order $116064$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 279.1500271937239 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-138}) \), \(\Q(\sqrt{-69}) \), \(\Q(\sqrt{2}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{2}, \sqrt{-69})\), 6.0.403840055808.5, 6.0.50480006976.3, 6.6.1229312.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.24.318 | $x^{12} + 60 x^{11} + 14 x^{10} + 36 x^{9} - 34 x^{8} - 32 x^{7} - 48 x^{6} - 32 x^{5} + 36 x^{4} - 16 x^{3} - 40 x^{2} - 48 x + 56$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ |
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $23$ | 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |