magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 0, -3, 0, 0, 4, 0, 0, -2, 0, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^9 + 4*x^6 - 3*x^3 + 1)
gp: K = bnfinit(x^12 - 2*x^9 + 4*x^6 - 3*x^3 + 1, 1)
Normalized defining polynomial
\( x^{12} - 2 x^{9} + 4 x^{6} - 3 x^{3} + 1 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1037970703125=3^{12}\cdot 5^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $10.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
Trivial group, which has order $1$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( a^{9} - a^{6} + 2 a^{3} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( a \), \( 2 a^{11} - 3 a^{8} + 6 a^{5} - 3 a^{2} - 1 \), \( a^{11} - a^{9} - a^{8} + a^{6} + 3 a^{5} - 3 a^{3} + 1 \), \( a^{10} - a^{7} + 3 a^{4} - a + 1 \), \( a^{11} + a^{10} - 2 a^{8} - a^{7} + 3 a^{5} + 2 a^{4} - 2 a^{2} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46.5914285344 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times S_3$ (as 12T11):
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A solvable group of order 24 |
| The 12 conjugacy class representatives for $S_3 \times C_4$ |
| Character table for $S_3 \times C_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.1.135.1, \(\Q(\zeta_{5})\), 6.2.91125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.12.5 | $x^{12} + 33 x^{11} - 63 x^{10} - 36 x^{9} - 90 x^{8} - 54 x^{7} - 54 x^{6} - 108 x^{4} - 27 x^{3} - 81 x^{2} + 81 x - 81$ | $3$ | $4$ | $12$ | $S_3 \times C_4$ | $[3/2]_{2}^{4}$ |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3_5.2t1.1c1 | $1$ | $ 3 \cdot 5 $ | $x^{2} - x + 4$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.5.2t1.1c1 | $1$ | $ 5 $ | $x^{2} - x - 1$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.5.4t1.1c1 | $1$ | $ 5 $ | $x^{4} - x^{3} + x^{2} - x + 1$ | $C_4$ (as 4T1) | $0$ | $-1$ |
| 1.3_5.4t1.1c1 | $1$ | $ 3 \cdot 5 $ | $x^{4} - x^{3} - 4 x^{2} + 4 x + 1$ | $C_4$ (as 4T1) | $0$ | $1$ | |
| * | 1.5.4t1.1c2 | $1$ | $ 5 $ | $x^{4} - x^{3} + x^{2} - x + 1$ | $C_4$ (as 4T1) | $0$ | $-1$ |
| 1.3_5.4t1.1c2 | $1$ | $ 3 \cdot 5 $ | $x^{4} - x^{3} - 4 x^{2} + 4 x + 1$ | $C_4$ (as 4T1) | $0$ | $1$ | |
| * | 2.3e3_5.3t2.1c1 | $2$ | $ 3^{3} \cdot 5 $ | $x^{3} + 3 x - 1$ | $S_3$ (as 3T2) | $1$ | $0$ |
| * | 2.3e3_5.6t3.1c1 | $2$ | $ 3^{3} \cdot 5 $ | $x^{6} - x^{3} - 1$ | $D_{6}$ (as 6T3) | $1$ | $0$ |
| * | 2.3e3_5e2.12t11.1c1 | $2$ | $ 3^{3} \cdot 5^{2}$ | $x^{12} - 2 x^{9} + 4 x^{6} - 3 x^{3} + 1$ | $S_3 \times C_4$ (as 12T11) | $0$ | $0$ |
| * | 2.3e3_5e2.12t11.1c2 | $2$ | $ 3^{3} \cdot 5^{2}$ | $x^{12} - 2 x^{9} + 4 x^{6} - 3 x^{3} + 1$ | $S_3 \times C_4$ (as 12T11) | $0$ | $0$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.