Properties

Label 12.0.1025271882697689.1
Degree $12$
Signature $[0, 6]$
Discriminant $3^{14}\cdot 11^{8}$
Root discriminant $17.82$
Ramified primes $3, 11$
Class number $4$
Class group $[4]$
Galois group $S_4$ (as 12T9)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![9, 36, 198, -294, 195, -9, -35, -21, 24, -1, 0, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 3*x^11 - x^9 + 24*x^8 - 21*x^7 - 35*x^6 - 9*x^5 + 195*x^4 - 294*x^3 + 198*x^2 + 36*x + 9)
 
gp: K = bnfinit(x^12 - 3*x^11 - x^9 + 24*x^8 - 21*x^7 - 35*x^6 - 9*x^5 + 195*x^4 - 294*x^3 + 198*x^2 + 36*x + 9, 1)
 

Normalized defining polynomial

\( x^{12} - 3 x^{11} - x^{9} + 24 x^{8} - 21 x^{7} - 35 x^{6} - 9 x^{5} + 195 x^{4} - 294 x^{3} + 198 x^{2} + 36 x + 9 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1025271882697689=3^{14}\cdot 11^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17.82$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4}$, $\frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{4}{9} a^{5} + \frac{1}{9} a^{4} - \frac{1}{3} a$, $\frac{1}{9} a^{9} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{1}{3} a^{5} - \frac{1}{9} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{171} a^{10} + \frac{7}{171} a^{9} + \frac{8}{171} a^{8} + \frac{2}{57} a^{7} + \frac{25}{171} a^{6} - \frac{67}{171} a^{5} - \frac{70}{171} a^{4} + \frac{2}{57} a^{3} + \frac{6}{19} a^{2} - \frac{23}{57} a + \frac{4}{19}$, $\frac{1}{972990} a^{11} - \frac{671}{486495} a^{10} + \frac{7984}{486495} a^{9} - \frac{1057}{108110} a^{8} + \frac{1237}{324330} a^{7} + \frac{2108}{97299} a^{6} + \frac{66391}{194598} a^{5} - \frac{146107}{486495} a^{4} + \frac{122017}{324330} a^{3} + \frac{87149}{324330} a^{2} + \frac{1891}{64866} a - \frac{399}{5690}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{49}{17070} a^{11} + \frac{938}{25605} a^{10} - \frac{1337}{25605} a^{9} - \frac{4361}{51210} a^{8} - \frac{6413}{51210} a^{7} + \frac{3185}{5121} a^{6} + \frac{1127}{10242} a^{5} - \frac{9758}{8535} a^{4} - \frac{26831}{17070} a^{3} + \frac{65303}{17070} a^{2} - \frac{5209}{1138} a + \frac{833}{5690} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 705.03309262 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_4$ (as 12T9):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 24
The 5 conjugacy class representatives for $S_4$
Character table for $S_4$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.1.3267.1 x3, 6.0.32019867.1, 6.2.10673289.1, 6.0.32019867.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 4 sibling: data not computed
Degree 6 siblings: data not computed
Degree 8 sibling: data not computed
Degree 12 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ R ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.6.7.4$x^{6} + 3 x^{2} + 3$$6$$1$$7$$S_3$$[3/2]_{2}$
3.6.7.4$x^{6} + 3 x^{2} + 3$$6$$1$$7$$S_3$$[3/2]_{2}$
$11$11.6.4.1$x^{6} + 220 x^{3} + 41503$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$
11.6.4.1$x^{6} + 220 x^{3} + 41503$$3$$2$$4$$S_3$$[\ ]_{3}^{2}$