Normalized defining polynomial
\( x^{12} - 4 x^{11} + 14 x^{10} - 20 x^{9} + 115 x^{8} - 192 x^{7} + 138 x^{6} - 568 x^{5} + 770 x^{4} + 360 x^{3} + 1496 x^{2} - 1904 x + 824 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10240000000000000000=2^{26}\cdot 5^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{168} a^{10} - \frac{1}{12} a^{9} - \frac{4}{21} a^{8} - \frac{1}{21} a^{7} - \frac{13}{168} a^{6} + \frac{41}{84} a^{5} - \frac{1}{6} a^{3} - \frac{1}{12} a^{2} - \frac{5}{14} a - \frac{1}{42}$, $\frac{1}{1269611876934744} a^{11} - \frac{823526438031}{423203958978248} a^{10} - \frac{16120928361541}{211601979489124} a^{9} + \frac{874331853417}{7557213553183} a^{8} + \frac{430500997825363}{1269611876934744} a^{7} + \frac{305053260277685}{1269611876934744} a^{6} + \frac{284786662930681}{634805938467372} a^{5} - \frac{15737339921203}{45343281319098} a^{4} + \frac{5512707306811}{12955223234028} a^{3} + \frac{92596023725623}{634805938467372} a^{2} - \frac{52388221948982}{158701484616843} a - \frac{92154129196547}{317402969233686}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 142977.462814 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 120 |
| The 7 conjugacy class representatives for $S_5$ |
| Character table for $S_5$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), 6.0.320000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 15 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.4.9.7 | $x^{4} + 2 x^{2} + 6$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.4.9.7 | $x^{4} + 2 x^{2} + 6$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.10.15.1 | $x^{10} - 10 x^{6} + 5$ | $10$ | $1$ | $15$ | $F_5$ | $[7/4]_{4}$ |