Normalized defining polynomial
\( x^{12} - 2 x^{11} + 23 x^{10} - 70 x^{9} + 1683 x^{8} - 1182 x^{7} + 58064 x^{6} + 29528 x^{5} + 1326358 x^{4} + 312844 x^{3} + 19852557 x^{2} - 2851794 x + 125095671 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10208309886795316042399744=2^{18}\cdot 7^{10}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $121.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(728=2^{3}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{728}(1,·)$, $\chi_{728}(549,·)$, $\chi_{728}(81,·)$, $\chi_{728}(9,·)$, $\chi_{728}(173,·)$, $\chi_{728}(61,·)$, $\chi_{728}(337,·)$, $\chi_{728}(181,·)$, $\chi_{728}(361,·)$, $\chi_{728}(121,·)$, $\chi_{728}(573,·)$, $\chi_{728}(101,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{189} a^{6} + \frac{2}{63} a^{5} - \frac{17}{189} a^{4} - \frac{1}{63} a^{3} + \frac{43}{189} a^{2} + \frac{8}{63} a - \frac{1}{7}$, $\frac{1}{189} a^{7} + \frac{10}{189} a^{5} - \frac{1}{7} a^{4} - \frac{2}{189} a^{3} + \frac{3}{7} a^{2} + \frac{2}{21} a - \frac{1}{7}$, $\frac{1}{189} a^{8} - \frac{8}{63} a^{5} - \frac{1}{9} a^{4} - \frac{5}{63} a^{3} - \frac{34}{189} a^{2} - \frac{5}{63} a + \frac{3}{7}$, $\frac{1}{5103} a^{9} - \frac{1}{567} a^{8} - \frac{4}{1701} a^{7} + \frac{4}{1701} a^{6} - \frac{113}{1701} a^{5} - \frac{185}{1701} a^{4} + \frac{647}{5103} a^{3} - \frac{383}{1701} a^{2} + \frac{25}{189} a + \frac{2}{7}$, $\frac{1}{5103} a^{10} - \frac{4}{1701} a^{8} + \frac{4}{1701} a^{7} + \frac{4}{1701} a^{6} + \frac{130}{1701} a^{5} + \frac{512}{5103} a^{4} + \frac{271}{1701} a^{3} - \frac{64}{189} a^{2} + \frac{3}{7} a$, $\frac{1}{10092326736718518520347} a^{11} + \frac{164699205066976960}{3364108912239506173449} a^{10} + \frac{298232463579746204}{10092326736718518520347} a^{9} + \frac{2180384829958164439}{3364108912239506173449} a^{8} + \frac{5398053065357580923}{3364108912239506173449} a^{7} + \frac{6299678706596101}{373789879137722908161} a^{6} + \frac{683274035776361969993}{10092326736718518520347} a^{5} - \frac{270080576608852570030}{3364108912239506173449} a^{4} - \frac{934041983629474609637}{10092326736718518520347} a^{3} + \frac{847639499844733716341}{3364108912239506173449} a^{2} + \frac{158635839411778434773}{373789879137722908161} a + \frac{17432093114210263}{137069996016766743}$
Class group and class number
$C_{3}\times C_{3}\times C_{17784}$, which has order $160056$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17569.03784509895 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-182}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{13}) \), 3.3.8281.2, \(\Q(\sqrt{13}, \sqrt{-14})\), 6.0.3195044582912.4, 6.0.245772660224.3, 6.6.891474493.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.23 | $x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| $7$ | 7.12.10.2 | $x^{12} + 35 x^{6} + 441$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $13$ | 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |