Normalized defining polynomial
\( x^{12} - 4 x^{9} + 3 x^{8} - 6 x^{7} - 2 x^{6} - 6 x^{5} + 21 x^{4} + 30 x^{3} + 27 x^{2} + 18 x + 9 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(101559956668416=2^{18}\cdot 3^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4}$, $\frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{1}{9} a^{5} + \frac{1}{9} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{9} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{4}{9} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{7} + \frac{1}{9} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{801} a^{11} - \frac{2}{801} a^{10} + \frac{4}{801} a^{9} - \frac{4}{267} a^{8} + \frac{116}{801} a^{7} + \frac{118}{801} a^{6} + \frac{29}{801} a^{5} - \frac{242}{801} a^{4} + \frac{109}{267} a^{3} - \frac{10}{89} a^{2} - \frac{109}{267} a - \frac{44}{89}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{46}{801} a^{11} + \frac{1}{267} a^{10} - \frac{2}{267} a^{9} + \frac{196}{801} a^{8} - \frac{58}{267} a^{7} + \frac{119}{267} a^{6} - \frac{88}{801} a^{5} + \frac{121}{267} a^{4} - \frac{386}{267} a^{3} - \frac{311}{267} a^{2} - \frac{168}{89} a - \frac{23}{89} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 635.385098052 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_6\times C_2$ (as 12T219):
| A non-solvable group of order 1440 |
| The 22 conjugacy class representatives for $S_6\times C_2$ |
| Character table for $S_6\times C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 6.2.3359232.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.26 | $x^{12} - 12 x^{10} - 2340 x^{8} + 1120 x^{6} + 1264 x^{4} - 192 x^{2} + 3648$ | $2$ | $6$ | $18$ | $C_2^2 \times A_4$ | $[2, 2, 3]^{6}$ |
| $3$ | 3.6.11.7 | $x^{6} + 21$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ |
| 3.6.7.5 | $x^{6} + 6 x^{2} + 3$ | $6$ | $1$ | $7$ | $D_{6}$ | $[3/2]_{2}^{2}$ |