Normalized defining polynomial
\( x^{12} - x^{11} + 18 x^{10} - 5 x^{9} + 243 x^{8} - 98 x^{7} + 1039 x^{6} - 210 x^{5} + 3303 x^{4} - 1139 x^{3} + 1366 x^{2} + 325 x + 169 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(101439097511492601=3^{6}\cdot 7^{8}\cdot 17^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(357=3\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{357}(256,·)$, $\chi_{357}(1,·)$, $\chi_{357}(67,·)$, $\chi_{357}(137,·)$, $\chi_{357}(205,·)$, $\chi_{357}(239,·)$, $\chi_{357}(16,·)$, $\chi_{357}(305,·)$, $\chi_{357}(50,·)$, $\chi_{357}(86,·)$, $\chi_{357}(169,·)$, $\chi_{357}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{13} a^{7} - \frac{4}{13} a^{4} - \frac{5}{13} a$, $\frac{1}{13} a^{8} - \frac{4}{13} a^{5} - \frac{5}{13} a^{2}$, $\frac{1}{13} a^{9} - \frac{4}{13} a^{6} - \frac{5}{13} a^{3}$, $\frac{1}{1651} a^{10} - \frac{34}{1651} a^{9} + \frac{51}{1651} a^{8} + \frac{32}{1651} a^{7} - \frac{345}{1651} a^{6} + \frac{823}{1651} a^{5} + \frac{462}{1651} a^{4} + \frac{157}{1651} a^{3} + \frac{83}{1651} a^{2} + \frac{28}{1651} a - \frac{12}{127}$, $\frac{1}{142981286048159} a^{11} - \frac{19225152281}{142981286048159} a^{10} - \frac{1677804807688}{142981286048159} a^{9} - \frac{1563497340342}{142981286048159} a^{8} - \frac{536612629383}{142981286048159} a^{7} - \frac{60883127100071}{142981286048159} a^{6} - \frac{387337876531}{10998560465243} a^{5} - \frac{40367944636112}{142981286048159} a^{4} - \frac{23457296565359}{142981286048159} a^{3} - \frac{11535201753722}{142981286048159} a^{2} - \frac{1105937483473}{10998560465243} a - \frac{332525799508}{846043112711}$
Class group and class number
$C_{13}$, which has order $13$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1786904954}{1125836898017} a^{11} + \frac{2591583648}{1125836898017} a^{10} - \frac{32521351238}{1125836898017} a^{9} + \frac{22762679686}{1125836898017} a^{8} - \frac{430368660023}{1125836898017} a^{7} + \frac{366338661178}{1125836898017} a^{6} - \frac{140978502354}{86602838309} a^{5} + \frac{1136094959356}{1125836898017} a^{4} - \frac{5667060866394}{1125836898017} a^{3} + \frac{4730235424204}{1125836898017} a^{2} - \frac{164909029884}{86602838309} a + \frac{3778101786}{6661756793} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1059.54542703 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-51}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{-3}, \sqrt{17})\), 6.0.64827.1, 6.6.11796113.1, 6.0.318495051.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{12}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $17$ | 17.12.6.1 | $x^{12} + 117912 x^{6} - 1419857 x^{2} + 3475809936$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |