Normalized defining polynomial
\( x^{12} - 3 x^{11} + 5 x^{10} - 17 x^{9} + 38 x^{8} - 46 x^{7} + 49 x^{6} - 44 x^{5} + 20 x^{4} - 10 x^{3} + 6 x^{2} + x + 1 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1012391292416=2^{9}\cdot 7^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $10.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{898} a^{11} + \frac{183}{898} a^{10} - \frac{81}{898} a^{9} - \frac{133}{449} a^{8} + \frac{401}{898} a^{7} + \frac{3}{449} a^{6} - \frac{91}{449} a^{5} - \frac{221}{898} a^{4} - \frac{227}{898} a^{3} + \frac{423}{898} a^{2} - \frac{170}{449} a - \frac{379}{898}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{517}{898} a^{11} + \frac{1475}{898} a^{10} - \frac{1287}{449} a^{9} + \frac{8659}{898} a^{8} - \frac{18737}{898} a^{7} + \frac{23389}{898} a^{6} - \frac{24891}{898} a^{5} + \frac{10208}{449} a^{4} - \frac{4854}{449} a^{3} + \frac{4911}{898} a^{2} - \frac{1012}{449} a + \frac{314}{449} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 64.6927628759 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times D_4$ (as 12T14):
| A solvable group of order 24 |
| The 15 conjugacy class representatives for $D_4 \times C_3$ |
| Character table for $D_4 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{7})^+\), 4.0.2744.1, \(\Q(\zeta_{7})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $7$ | 7.12.11.2 | $x^{12} + 56$ | $12$ | $1$ | $11$ | $D_4 \times C_3$ | $[\ ]_{12}^{2}$ |