Normalized defining polynomial
\( x^{12} + 357x^{10} + 49266x^{8} + 3331881x^{6} + 114704100x^{4} + 1871970912x^{2} + 11231825472 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(100024909896188699799293952\) \(\medspace = 2^{12}\cdot 3^{6}\cdot 7^{10}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(146.78\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2\cdot 3^{1/2}7^{5/6}17^{3/4}\approx 146.78297330834587$ | ||
Ramified primes: | \(2\), \(3\), \(7\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(1428=2^{2}\cdot 3\cdot 7\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{1428}(1,·)$, $\chi_{1428}(803,·)$, $\chi_{1428}(613,·)$, $\chi_{1428}(1007,·)$, $\chi_{1428}(169,·)$, $\chi_{1428}(395,·)$, $\chi_{1428}(781,·)$, $\chi_{1428}(47,·)$, $\chi_{1428}(1067,·)$, $\chi_{1428}(205,·)$, $\chi_{1428}(373,·)$, $\chi_{1428}(251,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.34666128.2$^{2}$, 12.0.100024909896188699799293952.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3}a^{2}$, $\frac{1}{3}a^{3}$, $\frac{1}{153}a^{4}$, $\frac{1}{153}a^{5}$, $\frac{1}{3213}a^{6}$, $\frac{1}{6426}a^{7}-\frac{1}{306}a^{5}-\frac{1}{2}a$, $\frac{1}{655452}a^{8}-\frac{1}{12852}a^{6}-\frac{1}{306}a^{4}+\frac{1}{12}a^{2}$, $\frac{1}{1310904}a^{9}-\frac{1}{25704}a^{7}-\frac{1}{612}a^{5}-\frac{1}{8}a^{3}-\frac{1}{2}a$, $\frac{1}{102250512}a^{10}+\frac{1}{4869072}a^{8}-\frac{5}{111384}a^{6}+\frac{61}{31824}a^{4}-\frac{5}{156}a^{2}+\frac{1}{13}$, $\frac{1}{204501024}a^{11}+\frac{1}{9738144}a^{9}-\frac{5}{222768}a^{7}+\frac{61}{63648}a^{5}-\frac{5}{312}a^{3}+\frac{1}{26}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{4996}$, which has order $79936$ (assuming GRH)
Relative class number: $79936$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{5}{34083504}a^{10}+\frac{1457}{34083504}a^{8}+\frac{71}{15912}a^{6}+\frac{2177}{10608}a^{4}+\frac{209}{52}a^{2}+\frac{327}{13}$, $\frac{1}{12781314}a^{10}+\frac{61}{2840292}a^{8}+\frac{49}{23868}a^{6}+\frac{167}{1989}a^{4}+\frac{233}{156}a^{2}+\frac{138}{13}$, $\frac{1}{3787056}a^{10}+\frac{23}{286416}a^{8}+\frac{3001}{334152}a^{6}+\frac{14647}{31824}a^{4}+\frac{823}{78}a^{2}+\frac{1041}{13}$, $\frac{11}{51125256}a^{10}+\frac{127}{1893528}a^{8}+\frac{71}{9282}a^{6}+\frac{6235}{15912}a^{4}+\frac{453}{52}a^{2}+\frac{841}{13}$, $\frac{23}{102250512}a^{10}+\frac{695}{11361168}a^{8}+\frac{71}{12376}a^{6}+\frac{419}{1872}a^{4}+\frac{87}{26}a^{2}+\frac{153}{13}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1059.54542703 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 1059.54542703 \cdot 79936}{2\cdot\sqrt{100024909896188699799293952}}\cr\approx \mathstrut & 0.260529630689 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), \(\Q(\zeta_{7})^+\), 4.0.34666128.2, 6.6.11796113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.12.0.1}{12} }$ | R | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.2.0.1}{2} }^{6}$ | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.4.0.1}{4} }^{3}$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.4.0.1}{4} }^{3}$ | ${\href{/padicField/43.1.0.1}{1} }^{12}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.3.0.1}{3} }^{4}$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.6.6.3 | $x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
2.6.6.3 | $x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
\(3\) | 3.12.6.1 | $x^{12} + 18 x^{8} + 81 x^{4} - 486 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
\(7\) | 7.12.10.5 | $x^{12} - 154 x^{6} - 1421$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |