Properties

Label 12.0.100...952.1
Degree $12$
Signature $[0, 6]$
Discriminant $1.000\times 10^{26}$
Root discriminant \(146.78\)
Ramified primes $2,3,7,17$
Class number $79936$ (GRH)
Class group [2, 2, 4, 4996] (GRH)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 357*x^10 + 49266*x^8 + 3331881*x^6 + 114704100*x^4 + 1871970912*x^2 + 11231825472)
 
gp: K = bnfinit(y^12 + 357*y^10 + 49266*y^8 + 3331881*y^6 + 114704100*y^4 + 1871970912*y^2 + 11231825472, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 + 357*x^10 + 49266*x^8 + 3331881*x^6 + 114704100*x^4 + 1871970912*x^2 + 11231825472);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 + 357*x^10 + 49266*x^8 + 3331881*x^6 + 114704100*x^4 + 1871970912*x^2 + 11231825472)
 

\( x^{12} + 357x^{10} + 49266x^{8} + 3331881x^{6} + 114704100x^{4} + 1871970912x^{2} + 11231825472 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(100024909896188699799293952\) \(\medspace = 2^{12}\cdot 3^{6}\cdot 7^{10}\cdot 17^{9}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(146.78\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{1/2}7^{5/6}17^{3/4}\approx 146.78297330834587$
Ramified primes:   \(2\), \(3\), \(7\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{17}) \)
$\card{ \Gal(K/\Q) }$:  $12$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1428=2^{2}\cdot 3\cdot 7\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{1428}(1,·)$, $\chi_{1428}(803,·)$, $\chi_{1428}(613,·)$, $\chi_{1428}(1007,·)$, $\chi_{1428}(169,·)$, $\chi_{1428}(395,·)$, $\chi_{1428}(781,·)$, $\chi_{1428}(47,·)$, $\chi_{1428}(1067,·)$, $\chi_{1428}(205,·)$, $\chi_{1428}(373,·)$, $\chi_{1428}(251,·)$$\rbrace$
This is a CM field.
Reflex fields:  4.0.34666128.2$^{2}$, 12.0.100024909896188699799293952.1$^{30}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{3}a^{2}$, $\frac{1}{3}a^{3}$, $\frac{1}{153}a^{4}$, $\frac{1}{153}a^{5}$, $\frac{1}{3213}a^{6}$, $\frac{1}{6426}a^{7}-\frac{1}{306}a^{5}-\frac{1}{2}a$, $\frac{1}{655452}a^{8}-\frac{1}{12852}a^{6}-\frac{1}{306}a^{4}+\frac{1}{12}a^{2}$, $\frac{1}{1310904}a^{9}-\frac{1}{25704}a^{7}-\frac{1}{612}a^{5}-\frac{1}{8}a^{3}-\frac{1}{2}a$, $\frac{1}{102250512}a^{10}+\frac{1}{4869072}a^{8}-\frac{5}{111384}a^{6}+\frac{61}{31824}a^{4}-\frac{5}{156}a^{2}+\frac{1}{13}$, $\frac{1}{204501024}a^{11}+\frac{1}{9738144}a^{9}-\frac{5}{222768}a^{7}+\frac{61}{63648}a^{5}-\frac{5}{312}a^{3}+\frac{1}{26}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{2}\times C_{4}\times C_{4996}$, which has order $79936$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Relative class number: $79936$ (assuming GRH)

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{5}{34083504}a^{10}+\frac{1457}{34083504}a^{8}+\frac{71}{15912}a^{6}+\frac{2177}{10608}a^{4}+\frac{209}{52}a^{2}+\frac{327}{13}$, $\frac{1}{12781314}a^{10}+\frac{61}{2840292}a^{8}+\frac{49}{23868}a^{6}+\frac{167}{1989}a^{4}+\frac{233}{156}a^{2}+\frac{138}{13}$, $\frac{1}{3787056}a^{10}+\frac{23}{286416}a^{8}+\frac{3001}{334152}a^{6}+\frac{14647}{31824}a^{4}+\frac{823}{78}a^{2}+\frac{1041}{13}$, $\frac{11}{51125256}a^{10}+\frac{127}{1893528}a^{8}+\frac{71}{9282}a^{6}+\frac{6235}{15912}a^{4}+\frac{453}{52}a^{2}+\frac{841}{13}$, $\frac{23}{102250512}a^{10}+\frac{695}{11361168}a^{8}+\frac{71}{12376}a^{6}+\frac{419}{1872}a^{4}+\frac{87}{26}a^{2}+\frac{153}{13}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1059.54542703 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 1059.54542703 \cdot 79936}{2\cdot\sqrt{100024909896188699799293952}}\cr\approx \mathstrut & 0.260529630689 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 + 357*x^10 + 49266*x^8 + 3331881*x^6 + 114704100*x^4 + 1871970912*x^2 + 11231825472)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 + 357*x^10 + 49266*x^8 + 3331881*x^6 + 114704100*x^4 + 1871970912*x^2 + 11231825472, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 + 357*x^10 + 49266*x^8 + 3331881*x^6 + 114704100*x^4 + 1871970912*x^2 + 11231825472);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 + 357*x^10 + 49266*x^8 + 3331881*x^6 + 114704100*x^4 + 1871970912*x^2 + 11231825472);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{12}$ (as 12T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 12
The 12 conjugacy class representatives for $C_{12}$
Character table for $C_{12}$

Intermediate fields

\(\Q(\sqrt{17}) \), \(\Q(\zeta_{7})^+\), 4.0.34666128.2, 6.6.11796113.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.12.0.1}{12} }$ R ${\href{/padicField/11.12.0.1}{12} }$ ${\href{/padicField/13.2.0.1}{2} }^{6}$ R ${\href{/padicField/19.6.0.1}{6} }^{2}$ ${\href{/padicField/23.12.0.1}{12} }$ ${\href{/padicField/29.4.0.1}{4} }^{3}$ ${\href{/padicField/31.12.0.1}{12} }$ ${\href{/padicField/37.12.0.1}{12} }$ ${\href{/padicField/41.4.0.1}{4} }^{3}$ ${\href{/padicField/43.1.0.1}{1} }^{12}$ ${\href{/padicField/47.6.0.1}{6} }^{2}$ ${\href{/padicField/53.3.0.1}{3} }^{4}$ ${\href{/padicField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.6.6.3$x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$$2$$3$$6$$C_6$$[2]^{3}$
2.6.6.3$x^{6} + 6 x^{5} + 20 x^{4} + 42 x^{3} + 55 x^{2} + 36 x + 9$$2$$3$$6$$C_6$$[2]^{3}$
\(3\) Copy content Toggle raw display 3.12.6.1$x^{12} + 18 x^{8} + 81 x^{4} - 486 x^{2} + 1458$$2$$6$$6$$C_{12}$$[\ ]_{2}^{6}$
\(7\) Copy content Toggle raw display 7.12.10.5$x^{12} - 154 x^{6} - 1421$$6$$2$$10$$C_{12}$$[\ ]_{6}^{2}$
\(17\) Copy content Toggle raw display 17.12.9.1$x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$$4$$3$$9$$C_{12}$$[\ ]_{4}^{3}$