Normalized defining polynomial
\( x^{11} - 2 x^{10} - 20 x^{9} + 105 x^{8} - 255 x^{7} - 444 x^{6} + 4878 x^{5} - 12735 x^{4} + 14040 x^{3} - 3040 x^{2} - 6016 x - 1048 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-287988303052800000000=-\,2^{20}\cdot 3^{15}\cdot 5^{8}\cdot 7^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{30} a^{6} + \frac{1}{10} a^{5} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{2}{5} a + \frac{2}{15}$, $\frac{1}{30} a^{7} - \frac{3}{10} a^{5} - \frac{1}{6} a^{4} + \frac{1}{10} a^{2} + \frac{1}{3} a - \frac{2}{5}$, $\frac{1}{900} a^{8} + \frac{1}{225} a^{7} + \frac{7}{900} a^{6} - \frac{263}{900} a^{5} + \frac{1}{9} a^{4} + \frac{13}{900} a^{3} + \frac{71}{450} a^{2} - \frac{11}{225} a - \frac{71}{225}$, $\frac{1}{900} a^{9} - \frac{1}{100} a^{7} + \frac{1}{100} a^{6} + \frac{7}{25} a^{5} - \frac{43}{100} a^{4} + \frac{13}{30} a^{3} + \frac{8}{25} a^{2} - \frac{3}{25} a - \frac{91}{225}$, $\frac{1}{194953500} a^{10} + \frac{12787}{38990700} a^{9} + \frac{2347}{6498450} a^{8} - \frac{3599}{722050} a^{7} + \frac{1531}{1299690} a^{6} - \frac{6626119}{32492250} a^{5} + \frac{2875043}{12996900} a^{4} - \frac{6140251}{12996900} a^{3} - \frac{1292278}{3249225} a^{2} - \frac{2887229}{9747675} a + \frac{5490916}{48738375}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 60162090.9342 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_{11}$ (as 11T8):
| A non-solvable group of order 39916800 |
| The 56 conjugacy class representatives for $S_{11}$ are not computed |
| Character table for $S_{11}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 22 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.10.1 | $x^{4} + 2 x^{2} - 9$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.4.10.1 | $x^{4} + 2 x^{2} - 9$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.3.3.2 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.11.5 | $x^{6} + 3 x^{3} + 6$ | $6$ | $1$ | $11$ | $S_3^2$ | $[2, 5/2]_{2}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.6.5.2 | $x^{6} + 10$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.7.0.1 | $x^{7} - x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |