Properties

Label 11.5.24509212865...0000.1
Degree $11$
Signature $[5, 3]$
Discriminant $-\,2^{10}\cdot 3^{12}\cdot 5^{7}\cdot 7^{8}$
Root discriminant $71.38$
Ramified primes $2, 3, 5, 7$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $S_{11}$ (as 11T8)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1382, -5185, -1220, 2261, 1078, -16, -264, -30, 36, -2, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^11 - 4*x^10 - 2*x^9 + 36*x^8 - 30*x^7 - 264*x^6 - 16*x^5 + 1078*x^4 + 2261*x^3 - 1220*x^2 - 5185*x - 1382)
 
gp: K = bnfinit(x^11 - 4*x^10 - 2*x^9 + 36*x^8 - 30*x^7 - 264*x^6 - 16*x^5 + 1078*x^4 + 2261*x^3 - 1220*x^2 - 5185*x - 1382, 1)
 

Normalized defining polynomial

\( x^{11} - 4 x^{10} - 2 x^{9} + 36 x^{8} - 30 x^{7} - 264 x^{6} - 16 x^{5} + 1078 x^{4} + 2261 x^{3} - 1220 x^{2} - 5185 x - 1382 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $11$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[5, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-245092128659280000000=-\,2^{10}\cdot 3^{12}\cdot 5^{7}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $71.38$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{1210776317722395} a^{10} - \frac{240792850452137}{1210776317722395} a^{9} + \frac{76372404120853}{403592105907465} a^{8} - \frac{118377681689947}{403592105907465} a^{7} + \frac{60319174606347}{134530701969155} a^{6} + \frac{115455271870289}{403592105907465} a^{5} - \frac{24975582261412}{1210776317722395} a^{4} + \frac{233411381214779}{1210776317722395} a^{3} + \frac{47691954300511}{134530701969155} a^{2} - \frac{177883922211062}{1210776317722395} a + \frac{164137443595411}{1210776317722395}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 10477083.7506 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_{11}$ (as 11T8):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 39916800
The 56 conjugacy class representatives for $S_{11}$ are not computed
Character table for $S_{11}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 22 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }$ ${\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ ${\href{/LocalNumberField/23.5.0.1}{5} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/47.7.0.1}{7} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.4.4.4$x^{4} - 5$$2$$2$$4$$D_{4}$$[2, 2]^{2}$
2.6.6.1$x^{6} + x^{2} - 1$$2$$3$$6$$A_4$$[2, 2]^{3}$
$3$$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.9.12.10$x^{9} + 24 x^{6} + 18 x^{5} + 27$$3$$3$$12$$C_3 \wr C_3 $$[2, 2, 2]^{3}$
$5$$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.8.7.3$x^{8} + 10$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
$7$7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.8.6.2$x^{8} - 49 x^{4} + 3969$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$