Properties

Label 11.3.94640565245...9936.2
Degree $11$
Signature $[3, 4]$
Discriminant $2^{8}\cdot 41^{8}\cdot 47^{4}\cdot 3121^{4}$
Root discriminant $1864.46$
Ramified primes $2, 41, 47, 3121$
Class number $12$ (GRH)
Class group $[12]$ (GRH)
Galois group $\PSL(2,11)$ (as 11T5)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-4, -3376, -29097, -50807, 10109, 48090, -2175, 66, -401, 10, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^11 + 10*x^9 - 401*x^8 + 66*x^7 - 2175*x^6 + 48090*x^5 + 10109*x^4 - 50807*x^3 - 29097*x^2 - 3376*x - 4)
 
gp: K = bnfinit(x^11 + 10*x^9 - 401*x^8 + 66*x^7 - 2175*x^6 + 48090*x^5 + 10109*x^4 - 50807*x^3 - 29097*x^2 - 3376*x - 4, 1)
 

Normalized defining polynomial

\( x^{11} + 10 x^{9} - 401 x^{8} + 66 x^{7} - 2175 x^{6} + 48090 x^{5} + 10109 x^{4} - 50807 x^{3} - 29097 x^{2} - 3376 x - 4 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $11$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(946405652456836696490269155592519936=2^{8}\cdot 41^{8}\cdot 47^{4}\cdot 3121^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $1864.46$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 41, 47, 3121$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{72} a^{7} - \frac{1}{72} a^{6} + \frac{7}{36} a^{5} - \frac{17}{72} a^{4} - \frac{11}{36} a^{3} - \frac{1}{6} a^{2} - \frac{1}{8} a - \frac{17}{36}$, $\frac{1}{1296} a^{8} - \frac{1}{432} a^{7} + \frac{31}{324} a^{6} + \frac{11}{144} a^{5} + \frac{13}{108} a^{4} - \frac{145}{324} a^{3} - \frac{103}{432} a^{2} + \frac{131}{324} a + \frac{107}{324}$, $\frac{1}{23328} a^{9} + \frac{1}{5832} a^{8} + \frac{103}{23328} a^{7} + \frac{319}{23328} a^{6} + \frac{1147}{7776} a^{5} - \frac{146}{729} a^{4} + \frac{2759}{23328} a^{3} - \frac{6175}{23328} a^{2} + \frac{1079}{2916} a - \frac{871}{5832}$, $\frac{1}{419904} a^{10} - \frac{7}{419904} a^{9} + \frac{59}{419904} a^{8} - \frac{407}{209952} a^{7} - \frac{11681}{104976} a^{6} - \frac{42523}{419904} a^{5} + \frac{30823}{419904} a^{4} - \frac{38291}{104976} a^{3} + \frac{25519}{139968} a^{2} + \frac{5405}{34992} a + \frac{3749}{104976}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{12}$, which has order $12$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 24489446179200 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$\PSL(2,11)$ (as 11T5):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 660
The 8 conjugacy class representatives for $\PSL(2,11)$
Character table for $\PSL(2,11)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 12 sibling: data not computed
Arithmetically equvalently sibling: 11.3.946405652456836696490269155592519936.1

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/5.11.0.1}{11} }$ ${\href{/LocalNumberField/7.11.0.1}{11} }$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.11.0.1}{11} }$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ R ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ R ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.2.2$x^{2} + 2 x - 2$$2$$1$$2$$C_2$$[2]$
2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.6.5$x^{6} - 2 x^{4} + x^{2} - 3$$2$$3$$6$$C_6$$[2]^{3}$
41Data not computed
47Data not computed
3121Data not computed