Properties

Label 11.3.84046734705...1664.1
Degree $11$
Signature $[3, 4]$
Discriminant $2^{8}\cdot 3^{10}\cdot 11^{18}$
Root discriminant $227.39$
Ramified primes $2, 3, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $\PSL(2,11)$ (as 11T5)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![623040, -1237104, 710754, 39930, -159357, 37752, 1089, 363, -297, -33, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^11 - 33*x^9 - 297*x^8 + 363*x^7 + 1089*x^6 + 37752*x^5 - 159357*x^4 + 39930*x^3 + 710754*x^2 - 1237104*x + 623040)
 
gp: K = bnfinit(x^11 - 33*x^9 - 297*x^8 + 363*x^7 + 1089*x^6 + 37752*x^5 - 159357*x^4 + 39930*x^3 + 710754*x^2 - 1237104*x + 623040, 1)
 

Normalized defining polynomial

\( x^{11} - 33 x^{9} - 297 x^{8} + 363 x^{7} + 1089 x^{6} + 37752 x^{5} - 159357 x^{4} + 39930 x^{3} + 710754 x^{2} - 1237104 x + 623040 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $11$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(84046734705767110840721664=2^{8}\cdot 3^{10}\cdot 11^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $227.39$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{9} + \frac{1}{10} a^{8} + \frac{1}{10} a^{7} - \frac{3}{10} a^{6} + \frac{3}{10} a^{5} + \frac{3}{10} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{39984803952105862368760} a^{10} - \frac{232719900117146772637}{4998100494013232796095} a^{9} - \frac{9075804323877225410661}{39984803952105862368760} a^{8} + \frac{427985373231385620507}{7996960790421172473752} a^{7} - \frac{9169042224439314038181}{39984803952105862368760} a^{6} - \frac{17119817829859098967863}{39984803952105862368760} a^{5} + \frac{1718362210151382724426}{4998100494013232796095} a^{4} - \frac{12413016627892373960037}{39984803952105862368760} a^{3} - \frac{7393061389255664197857}{19992401976052931184380} a^{2} + \frac{4655787096643590436337}{19992401976052931184380} a - \frac{305633581689443009192}{999620098802646559219}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 21964398524.0 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$\PSL(2,11)$ (as 11T5):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 660
The 8 conjugacy class representatives for $\PSL(2,11)$
Character table for $\PSL(2,11)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 12 sibling: data not computed
Arithmetically equvalently sibling: 11.3.84046734705767110840721664.2

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ R ${\href{/LocalNumberField/13.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.11.0.1}{11} }$ ${\href{/LocalNumberField/53.11.0.1}{11} }$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.2.2.2$x^{2} + 2 x - 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
$3$3.11.10.1$x^{11} - 3$$11$$1$$10$$C_{11}:C_5$$[\ ]_{11}^{5}$
$11$11.11.18.1$x^{11} + 66 x^{8} + 11$$11$$1$$18$$C_{11}:C_5$$[9/5]_{5}$