Properties

Label 11.3.81905390937...0000.1
Degree $11$
Signature $[3, 4]$
Discriminant $2^{18}\cdot 5^{18}\cdot 659^{6}$
Root discriminant $1492.58$
Ramified primes $2, 5, 659$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $M_{11}$ (as 11T6)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-17870868, -402336, 31690, 803165, 253960, -126712, -13784, 6230, 280, -130, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^11 - 2*x^10 - 130*x^9 + 280*x^8 + 6230*x^7 - 13784*x^6 - 126712*x^5 + 253960*x^4 + 803165*x^3 + 31690*x^2 - 402336*x - 17870868)
 
gp: K = bnfinit(x^11 - 2*x^10 - 130*x^9 + 280*x^8 + 6230*x^7 - 13784*x^6 - 126712*x^5 + 253960*x^4 + 803165*x^3 + 31690*x^2 - 402336*x - 17870868, 1)
 

Normalized defining polynomial

\( x^{11} - 2 x^{10} - 130 x^{9} + 280 x^{8} + 6230 x^{7} - 13784 x^{6} - 126712 x^{5} + 253960 x^{4} + 803165 x^{3} + 31690 x^{2} - 402336 x - 17870868 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $11$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(81905390937410041000000000000000000=2^{18}\cdot 5^{18}\cdot 659^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $1492.58$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 659$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{2}{5}$, $\frac{1}{145} a^{6} + \frac{9}{145} a^{5} - \frac{12}{29} a^{4} + \frac{6}{29} a^{3} + \frac{3}{29} a^{2} - \frac{27}{145} a + \frac{72}{145}$, $\frac{1}{145} a^{7} + \frac{4}{145} a^{5} - \frac{2}{29} a^{4} + \frac{7}{29} a^{3} - \frac{17}{145} a^{2} + \frac{5}{29} a - \frac{68}{145}$, $\frac{1}{4205} a^{8} - \frac{1}{841} a^{7} + \frac{12}{4205} a^{6} + \frac{49}{841} a^{5} + \frac{95}{841} a^{4} - \frac{1692}{4205} a^{3} - \frac{273}{841} a^{2} + \frac{461}{4205} a - \frac{391}{841}$, $\frac{1}{4205} a^{9} - \frac{13}{4205} a^{7} - \frac{14}{4205} a^{6} - \frac{66}{841} a^{5} - \frac{1202}{4205} a^{4} + \frac{326}{841} a^{3} + \frac{1466}{4205} a^{2} + \frac{553}{4205} a - \frac{157}{841}$, $\frac{1}{888979050} a^{10} - \frac{3827}{88897905} a^{9} + \frac{7916}{88897905} a^{8} - \frac{274904}{88897905} a^{7} - \frac{9538}{88897905} a^{6} - \frac{35942497}{444489525} a^{5} - \frac{25623136}{88897905} a^{4} - \frac{20128907}{88897905} a^{3} - \frac{63215729}{177795810} a^{2} + \frac{892531}{88897905} a - \frac{8876887}{49387725}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 122400933489000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$M_{11}$ (as 11T6):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 7920
The 10 conjugacy class representatives for $M_{11}$
Character table for $M_{11}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 12 sibling: data not computed
Degree 22 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.11.0.1}{11} }$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.8.16.74$x^{8} + 14 x^{6} + 20$$8$$1$$16$$\textrm{GL(2,3)}$$[4/3, 4/3, 3]_{3}^{2}$
$5$$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
5.5.9.5$x^{5} + 105$$5$$1$$9$$F_5$$[9/4]_{4}$
5.5.9.5$x^{5} + 105$$5$$1$$9$$F_5$$[9/4]_{4}$
659Data not computed