Properties

Label 11.3.75642061235...4976.1
Degree $11$
Signature $[3, 4]$
Discriminant $2^{8}\cdot 3^{12}\cdot 11^{18}$
Root discriminant $277.67$
Ramified primes $2, 3, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $\PSL(2,11)$ (as 11T5)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1269286, -5446584, -1182841, 638319, -17523, -31548, 10593, 792, -99, 44, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^11 + 44*x^9 - 99*x^8 + 792*x^7 + 10593*x^6 - 31548*x^5 - 17523*x^4 + 638319*x^3 - 1182841*x^2 - 5446584*x + 1269286)
 
gp: K = bnfinit(x^11 + 44*x^9 - 99*x^8 + 792*x^7 + 10593*x^6 - 31548*x^5 - 17523*x^4 + 638319*x^3 - 1182841*x^2 - 5446584*x + 1269286, 1)
 

Normalized defining polynomial

\( x^{11} + 44 x^{9} - 99 x^{8} + 792 x^{7} + 10593 x^{6} - 31548 x^{5} - 17523 x^{4} + 638319 x^{3} - 1182841 x^{2} - 5446584 x + 1269286 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $11$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(756420612351903997566494976=2^{8}\cdot 3^{12}\cdot 11^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $277.67$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{18} a^{7} - \frac{1}{9} a^{6} + \frac{1}{18} a^{4} + \frac{1}{18} a^{3} - \frac{1}{2} a^{2} - \frac{1}{9} a - \frac{4}{9}$, $\frac{1}{54} a^{8} + \frac{1}{27} a^{6} - \frac{5}{54} a^{5} - \frac{1}{18} a^{4} - \frac{7}{54} a^{3} + \frac{11}{27} a^{2} - \frac{4}{9} a + \frac{7}{27}$, $\frac{1}{324} a^{9} + \frac{1}{162} a^{8} - \frac{7}{324} a^{7} - \frac{19}{324} a^{6} - \frac{13}{324} a^{5} - \frac{10}{81} a^{4} - \frac{73}{324} a^{3} + \frac{155}{324} a^{2} - \frac{13}{81} a + \frac{23}{162}$, $\frac{1}{1626395943554946480132} a^{10} - \frac{1340969582741950115}{1626395943554946480132} a^{9} - \frac{4541566560530881589}{542131981184982160044} a^{8} + \frac{3032940768081028724}{135532995296245540011} a^{7} + \frac{15097042335925228997}{271065990592491080022} a^{6} + \frac{32856244871780244553}{542131981184982160044} a^{5} - \frac{88577914919946949001}{542131981184982160044} a^{4} + \frac{26430026410770604147}{90355330197497026674} a^{3} - \frac{222631358321855027717}{542131981184982160044} a^{2} - \frac{400284055170268989233}{813197971777473240066} a - \frac{181763742339552615455}{813197971777473240066}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 29099104590.7 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$\PSL(2,11)$ (as 11T5):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 660
The 8 conjugacy class representatives for $\PSL(2,11)$
Character table for $\PSL(2,11)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 12 sibling: data not computed
Arithmetically equvalently sibling: 11.3.756420612351903997566494976.2

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ R ${\href{/LocalNumberField/13.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.11.0.1}{11} }$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.11.0.1}{11} }$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.6.3$x^{6} + 2 x^{4} + x^{2} - 7$$2$$3$$6$$C_6$$[2]^{3}$
$3$$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.3.4.3$x^{3} - 3 x^{2} + 12$$3$$1$$4$$C_3$$[2]$
3.3.4.3$x^{3} - 3 x^{2} + 12$$3$$1$$4$$C_3$$[2]$
3.3.4.3$x^{3} - 3 x^{2} + 12$$3$$1$$4$$C_3$$[2]$
$11$11.11.18.5$x^{11} + 110 x^{8} + 11$$11$$1$$18$$C_{11}:C_5$$[9/5]_{5}$